scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a perfectly slow adiabatic expansion, i.e., keeping the same populations of instantaneous levels in the initial and final traps, but in a much shorter time.
Abstract: A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a perfectly slow adiabatic expansion, i.e., keeping the same populations of instantaneous levels in the initial and final traps, but in a much shorter time. This may require that the harmonic trap become transiently an expulsive parabolic potential. The cooling times achieved are shorter than those obtained using optimal-control bang-bang methods and real frequencies.

586 citations

Journal ArticleDOI
06 Oct 2016-Nature
TL;DR: Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syng as into lower olefins.
Abstract: Lower olefins-generally referring to ethylene, propylene and butylene-are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The 'Fischer-Tropsch to olefins' (FTO) process has long offered a way of producing lower olefins directly from syngas-a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

578 citations

Journal ArticleDOI
Ji-Huan He1
TL;DR: In this article, a variational iteration method is proposed to solve nonlinear partial differential equations without linearization or small perturbations, where a correction functional is constructed by a general Lagrange multiplier, which can be identified via variational theory.

571 citations

Journal ArticleDOI
TL;DR: In order to maintain relevance and continue upholding good reporting quality among observational studies in surgery, this paper aimed to update STROCSS 2019 guidelines, which were developed in 2017 and updated in 2019.

570 citations

Journal ArticleDOI
TL;DR: NF-kappaB p65 subunit repressed the Nrf2-antioxidant response element (ARE) pathway at transcriptional level and might provide a new insight into a possible role of NF- kappaB in suppressing the expression of anti-inflammatory or anti-tumor genes.

560 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022742
20216,322
20205,569
20195,063
20184,235