scispace - formally typeset
Search or ask a question
Institution

Southwest University

EducationChongqing, China
About: Southwest University is a education organization based out in Chongqing, China. It is known for research contribution in the topics: Gene & Population. The organization has 29772 authors who have published 27755 publications receiving 409441 citations. The organization is also known as: Southwest University in Chongqing & SWU.
Topics: Gene, Population, Catalysis, Bombyx mori, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: A new electrochemical biosensor based on catalyzed hairpin assembly target recycling and cascade electrocatalysis (cytochrome c (Cyt c) and alcohol oxidase (AOx)) for signal amplification was constructed for highly sensitive detection of microRNA (miRNA).
Abstract: In this work, a new electrochemical biosensor based on catalyzed hairpin assembly target recycling and cascade electrocatalysis (cytochrome c (Cyt c) and alcohol oxidase (AOx)) for signal amplification was constructed for highly sensitive detection of microRNA (miRNA). It is worth pointing out that target recycling was achieved only based on strand displacement process without the help of nuclease. Moreover, porous TiO2 nanosphere was synthesized, which could offer more surface area for Pt nanoparticles (PtNPs) enwrapping and enhance the amount of immobilized DNA strand 1 (S1) and Cyt c accordingly. With the mimicking sandwich-type reaction, the cascade catalysis amplification strategy was carried out by AOx catalyzing ethanol to acetaldehyde with the concomitant formation of high concentration of H2O2, which was further electrocatalyzed by PtNPs and Cyt c. This newly designed biosensor provided a sensitive detection of miRNA-155 from 0.8 fM to 1 nM with a relatively low detection limit of 0.35 fM.

96 citations

Journal ArticleDOI
Xiaoming Yang1, Yawen Luo1, Shanshan Zhu1, Yuanjiao Feng1, Yan Zhuo1, Yao Dou1 
TL;DR: The practicability of this sensing method was further validated by assaying TC in human urine samples and pharmaceutical preparations, confirming its potential to broaden avenues for detecting TCs.

96 citations

Journal ArticleDOI
Dejuan Li1, Xiaoling Wang1, Qin Huang1, Sai Li1, You Zhou1, Zhubo Li1 
TL;DR: It is suggested that CAPE-oNO2 ameliorated MIRI by suppressing the oxidative stress, inflammatory response, fibrosis and necrocytosis via the SIRT1/eNOS/NF-κB pathway.
Abstract: Caffeic acid phenethyl ester (CAPE) could ameliorate myocardial ischemia/reperfusion injury (MIRI) by various mechanisms, but there hadn’t been any reports on that CAPE could regulate silent information regulator 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro phenethyl ester (CAPE-oNO2) on MIRI and the possible mechanism based on the positive control of CAPE. The SD rats were subjected to left coronary artery ischemia /reperfusion (IR) and the H9c2 cell cultured in hypoxia/reoxygenation (HR) to induce the MIRI model. Prior to the procedure, vehicle, CAPE or CAPE-oNO2 were treated in the absence or presence of a SIRT1 inhibitor nicotinamide (NAM) and an eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME). In vivo, CAPE and CAPE-oNO2 conferred a cardioprotective effect as shown by reduced myocardial infarct size, cardiac marker enzymes and structural abnormalities. From immunohistochemical and sirius red staining, above two compounds ameliorated the TNF-α release and collagen deposition of IR rat hearts. They could agitate SIRT1 and eNOS expression, and consequently enhance NO release and suppress NF-κB signaling, to reduce the malondialdehyde content and cell necrosis. In vitro, they could inhibit HR-induced H9c2 cell apoptosis and ROS generation by activating SIRT1/eNOS pathway and inhabiting NF-κB expression. Emphatically, CAPE-oNO2 presented the stronger cardioprotection than CAPE both in vivo and in vitro. However, NAM and L-NAME eliminated the CAPE-oNO2-mediated cardioprotection by restraining SIRT1 and eNOS expression, respectively. It suggested that CAPE-oNO2 ameliorated MIRI by suppressing the oxidative stress, inflammatory response, fibrosis and necrocytosis via the SIRT1/eNOS/NF-κB pathway.

96 citations

Journal ArticleDOI
TL;DR: This review categorized nanozyme-based biosensors into four parts, respectively describing noncovalent and covalent modifications with antibodies and aptamers, and recent advances in antibody and aptamer labeled nanozyme bios Sensors are summarized.

96 citations

Journal ArticleDOI
TL;DR: In conclusion, feeding ethyl-cellulose RPM to achieve a ratio close to 2.8:1 in metabolizable protein improved dairy cow performance from parturition through 60 DIM, and was, at least in part, driven by the greater voluntary DMI and better liver function.

96 citations


Authors

Showing all 29978 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Hongjie Dai197570182579
Jing Wang1844046202769
Chao Zhang127311984711
Jianjun Liu112104071032
Miao Liu11199359811
Jun Yang107209055257
Eric Westhof9847234825
En-Tang Kang9776338498
Chang Ming Li9789642888
Wei Zhou93164039772
Li Zhang9291835648
Heinz Rennenberg8752726359
Tao Chen8682027714
Xun Wang8460632187
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

91% related

Beijing Normal University
48K papers, 922.8K citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Xiamen University
54.4K papers, 1M citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022461
20213,538
20203,257
20192,923
20182,479