scispace - formally typeset
Search or ask a question
Institution

Southwest University

EducationChongqing, China
About: Southwest University is a education organization based out in Chongqing, China. It is known for research contribution in the topics: Gene & Population. The organization has 29772 authors who have published 27755 publications receiving 409441 citations. The organization is also known as: Southwest University in Chongqing & SWU.
Topics: Gene, Population, Catalysis, Bombyx mori, Adsorption


Papers
More filters
Journal ArticleDOI
01 Sep 2014
TL;DR: By optimizing the five CSFs, the effectiveness and efficiency of the whole emergency management could be greatly promoted, according to the fact that performance of emergency management is affected by many factors.
Abstract: As the result of the warmer climate and the worse environment, human beings are facing with more serious natural disasters. It is urgent to improve emergency management. Due to the fact that performance of emergency management is affected by many factors, it is difficult to improve all of them in limited resources. Thus, a feasible way is to figure out some important and urgent ones to optimize. For this purpose, a new method identifying the critical success factors (CSF) is proposed in this paper. In this method, the evaluations of influencing factors in the form of intuitionistic fuzzy numbers (IFNs) are converted into basic probability assignments (BPAs). Then Dempster-Shafer theory is adopted to combine group decision. By doing so, there is no need for defuzzification of IFNs, and DEMATEL is applied on each fused BPA to seek for a final result from different aspects. Finally, five CSFs are found out. By optimizing the five CSFs, the effectiveness and efficiency of the whole emergency management could be greatly promoted.

134 citations

Journal ArticleDOI
Zhisong Lu1, Xuejuan Chen1, Ying Wang1, Xin Ting Zheng1, Chang Ming Li1 
TL;DR: In this article, a thiolated aptamer specific for AFB1 was linked to the surface of CdTe quantum dots via ligand exchange, and the fluorescence of modified-Q-dots was strongly quenched by GO.
Abstract: Aflatoxin B1 (AFB1), a secondary fungal metabolite of Aspergillus flavus, was employed as a model mycotoxin to establish an aptamer based assay that exploits the quenching of the fluorescence of CdTe quantum dots (Q-dots) by graphene oxide (GO). A thiolated aptamer specific for AFB1 was linked to the surface of Q-dots via ligand exchange. The fluorescence of the aptamer modified-Q-dots is strongly quenched by GO. If, however, AFB1 is added, fluorescence is restored depending on the quantity of AFB1 added. The system was evaluated both in phosphate buffer solution and in peanut oil. If performed in an aqueous system, the assay possesses good selectivity, a wide dynamic range (from 3.2 nM to 320 μM) and a low limit of detection (1.0 nM). If performed in peanut oil solution, the dynamic range is from 1.6 nM to 160 μM, and the limit of detection is 1.4 nM. In our perception, this is a simple, sensitive and selective method for the determination of AFB1 that also may be extended to the analysis of other mycotoxins.

134 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion.
Abstract: Microsporidian Nosema bombycis has received much attention because the pebrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pebrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees). Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability. Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pebrine.

134 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed cutting-edge wearable power generation methodologies, for which they discuss their pros and cons, underlying physics, and general design/evaluation criteria.
Abstract: Wearable devices are drawing increasing attention in both academia and industry in that they can offer unprecedented information related to human health in real-time and human–machine interactions, which is expected to enable a paradigm shift in the digital world. For this shift to occur, green and sustainable energy technology for powering flexible wearable devices is a roadblock. This paper is dedicated to reviewing cutting-edge wearable power generation methodologies, for which we discuss their pros and cons, underlying physics, and general design/evaluation criteria. Sensor types, materials, processing technology, power consumption, and methods of testing the stretchability and flexibility of wearable devices are also summarized. Based on application scenarios in healthcare, industrial inspection, structural monitoring, armed forces and consumer electronics, an integrated system architecture of wearable, flexible systems is presented. Finally, future perspectives of wearable technologies are outlined by covering the aspects of all-in-one printable wearable electronics, fiber and textile electronics, self-powered self-awareness wearable systems, hybrid-integrated Systems on a Chip (SoC) for flexible electronics, and Internet of Things (IoT)-enabled self-contained systems towards full life cycle monitoring.

134 citations

Journal ArticleDOI
TL;DR: A class of novel event-triggered dynamic encoding and decoding algorithms is proposed, based on which a kind of consensus protocol is presented and it is shown that the asymptotic convergence rate is related to the scale of the network, the number of quantization levels, the system parameter, and the network structure.
Abstract: Communication data rates and energy constraints are two important factors that have to be considered in the coordination control of multiagent networks. Although some encoder–decoder-based consensus protocols are available, there still exists a fundamental theoretical problem: how can we further reduce the update rate of control input for each agent without the changing consensus performance? In this paper, we consider the problem of average consensus over directed and time-varying digital networks of discrete-time first-order multiagent systems with limited communication data transmission rates. Each agent has a real-valued state but can only exchange binary symbolic sequence with its neighbors due to bandwidth constraints. A class of novel event-triggered dynamic encoding and decoding algorithms is proposed, based on which a kind of consensus protocol is presented. Moreover, we develop a scheme to select the numbers of time-varying quantization levels for each connected communication channel in the time-varying directed topologies at each time step. The analytical relation among system and network parameters is characterized explicitly. It is shown that the asymptotic convergence rate is related to the scale of the network, the number of quantization levels, the system parameter, and the network structure. It is also found that under the designed event-triggered protocol, for a directed and time-varying digital network, which uniformly contains a spanning tree over a time interval, the average consensus can be achieved with an exponential convergence rate based on merely 1-b information exchange between each pair of adjacent agents at each time step.

134 citations


Authors

Showing all 29978 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Hongjie Dai197570182579
Jing Wang1844046202769
Chao Zhang127311984711
Jianjun Liu112104071032
Miao Liu11199359811
Jun Yang107209055257
Eric Westhof9847234825
En-Tang Kang9776338498
Chang Ming Li9789642888
Wei Zhou93164039772
Li Zhang9291835648
Heinz Rennenberg8752726359
Tao Chen8682027714
Xun Wang8460632187
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

91% related

Beijing Normal University
48K papers, 922.8K citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Xiamen University
54.4K papers, 1M citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022461
20213,538
20203,257
20192,923
20182,479