scispace - formally typeset
Search or ask a question
Institution

Sun Yat-sen University

EducationGuangzhou, Guangdong, China
About: Sun Yat-sen University is a education organization based out in Guangzhou, Guangdong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 115149 authors who have published 113763 publications receiving 2286465 citations. The organization is also known as: Zhongshan University & SYSU.
Topics: Population, Cancer, Medicine, Cell growth, Metastasis


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the PARP inhibitor olaparib induces CD8+ T-cell infiltration and activation in vivo, and that CD8-cell depletion severely compromises antitumor efficacy, and provides a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC.
Abstract: Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T cell infiltration and activation in vivo, and that CD8+ T cell depletion severely compromises anti-tumor efficacy. Olaparib-induced T cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared to HR-proficient TNBC cells and in vivo models. CRISPR-knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC.

360 citations

Journal ArticleDOI
01 Feb 2012-Gut
TL;DR: Findings suggest that miR-124 plays a critical role in regulating cytoskeletal events and epithelial–mesenchymal cell transition and inhibits the invasive and/or metastatic potential of HCC, probably by its direct target on ROCK2 and EZH2 genes.
Abstract: Background Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-124) in hepatocellular carcinoma (HCC). Objective To determine the status of miR-124 expression and its underlying mechanisms in the pathogenesis of HCC. Methods The expression levels of miR-124 were first examined in HCC cell lines and tumour tissues by real-time PCR. The in vitro and in vivo functional effect of miR-124 was examined further. A luciferase reporter assay was conducted to confirm target associations. Results The expression levels of miR-124 were frequently reduced in HCC cells and tissues, and low-level expression of miR-124 was significantly associated with a more aggressive and/or poor prognostic phenotype of patients with HCC (p ′ -untranslated region (3′-UTR) of both ROCK2 and EZH2 mRNAs, and suppress their mRNA and protein expressions. These findings suggest that miR-124 plays a critical role in regulating cytoskeletal events and epithelial–mesenchymal cell transition and, ultimately, inhibits the invasive and/or metastatic potential of HCC, probably by its direct target on ROCK2 and EZH2 genes. These results provide functional and mechanistic links between the tumour suppressor miRNA-124 and the two oncogenes ROCK2 and EZH2 on the aggressive nature of HCC. Conclusion These data highlight an important role for miR-124 in the regulation of invasion and metastasis in the molecular aetiology of HCC, and suggest a potential application of miR-124 in prognosis prediction and cancer treatment.

359 citations

Journal ArticleDOI
TL;DR: Investigation of the ability of lapatinib to reverse tumor multidrug resistance (MDR) due to overexpression of ABC subfamily B member 1 (ABCB1) and ABCsubfamily G member 2 (ABCG2) transporters found it reverses ABCB1- and ABCG2-mediated MDR by directly inhibiting their transport function.
Abstract: Lapatinib is active at the ATP-binding site of tyrosine kinases that are associated with the human epidermal growth factor receptor (Her-1 or ErbB1) and Her-2. It is conceivable that lapatinib may inhibit the function of ATP-binding cassette (ABC) transporters by binding to their ATP-binding sites. The aim of this study was to investigate the ability of lapatinib to reverse tumor multidrug resistance (MDR) due to overexpression of ABC subfamily B member 1 (ABCB1) and ABC subfamily G member 2 (ABCG2) transporters. Our results showed that lapatinib significantly enhanced the sensitivity to ABCB1 or ABCG2 substrates in cells expressing these transporters, although a small synergetic effect was observed in combining lapatinib and conventional chemotherapeutic agents in parental sensitive MCF-7 or S1 cells. Lapatinib alone, however, did not significantly alter the sensitivity of non-ABCB1 or non-ABCG2 substrates in sensitive and resistant cells. Additionally, lapatinib significantly increased the accumulation of doxorubicin or mitoxantrone in ABCB1- or ABCG2-overexpressing cells and inhibited the transport of methotrexate and E217βG by ABCG2. Furthermore, lapatinib stimulated the ATPase activity of both ABCB1 and ABCG2 and inhibited the photolabeling of ABCB1 or ABCG2 with [125I]iodoarylazidoprazosin in a concentration-dependent manner. However, lapatinib did not affect the expression of these transporters at mRNA or protein levels. Importantly, lapatinib also strongly enhanced the effect of paclitaxel on the inhibition of growth of the ABCB1-overexpressing KBv200 cell xenografts in nude mice. Overall, we conclude that lapatinib reverses ABCB1- and ABCG2-mediated MDR by directly inhibiting their transport function. These findings may be useful for cancer combinational therapy with lapatinib in the clinic. [Cancer Res 2008;68(19):7905–14]

359 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: The frequency diversity of the subcarriers in OFDM systems is explored and a novel approach called FILA is proposed, which leverages the channel state information (CSI) to alleviate multipath effect at the receiver, which can significantly improve the localization accuracy compared with the corresponding RSSI approach.
Abstract: Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. WiFi-based indoor localization has been attractive due to its open access and low cost properties. However, the distance estimation based on received signal strength indicator (RSSI) is easily affected by the temporal and spatial variance due to the multipath effect, which contributes to most of the estimation errors in current systems. How to eliminate such effect so as to enhance the indoor localization performance is a big challenge. In this work, we analyze this effect across the physical layer and account for the undesirable RSSI readings being reported. We explore the frequency diversity of the subcarriers in OFDM systems and propose a novel approach called FILA, which leverages the channel state information (CSI) to alleviate multipath effect at the receiver. We implement the FILA system on commercial 802.11 NICs, and then evaluate its performance in different typical indoor scenarios. The experimental results show that the accuracy and latency of distance calculation can be significantly enhanced by using CSI. Moreover, FILA can significantly improve the localization accuracy compared with the corresponding RSSI approach.

359 citations

Journal ArticleDOI
05 Jul 2019-Foods
TL;DR: Overall, garlic is an excellent natural source of bioactive sulfur-containing compounds and has promising applications in the development of functional foods or nutraceuticals for the prevention and management of certain diseases.
Abstract: Garlic (Allium sativum L.) is a widely consumed spice in the world. Garlic contains diverse bioactive compounds, such as allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine. Substantial studies have shown that garlic and its bioactive constituents exhibit antioxidant, anti-inflammatory, antibacterial, antifungal, immunomodulatory, cardiovascular protective, anticancer, hepatoprotective, digestive system protective, anti-diabetic, anti-obesity, neuroprotective, and renal protective properties. In this review, the main bioactive compounds and important biological functions of garlic are summarized, highlighting and discussing the relevant mechanisms of actions. Overall, garlic is an excellent natural source of bioactive sulfur-containing compounds and has promising applications in the development of functional foods or nutraceuticals for the prevention and management of certain diseases.

359 citations


Authors

Showing all 115971 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Yang Gao1682047146301
Yang Yang1642704144071
Peter Carmeliet164844122918
Frank J. Gonzalez160114496971
Xiang Zhang1541733117576
Rui Zhang1512625107917
Seeram Ramakrishna147155299284
Joseph J.Y. Sung142124092035
Joseph Lau140104899305
Bin Liu138218187085
Georgios B. Giannakis137132173517
Kwok-Yung Yuen1371173100119
Shu Li136100178390
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

National University of Singapore
165.4K papers, 5.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023349
20221,547
202115,595
202013,930
201911,766