scispace - formally typeset
Search or ask a question
Institution

Sun Yat-sen University

EducationGuangzhou, Guangdong, China
About: Sun Yat-sen University is a education organization based out in Guangzhou, Guangdong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 115149 authors who have published 113763 publications receiving 2286465 citations. The organization is also known as: Zhongshan University & SYSU.
Topics: Population, Cancer, Medicine, Cell growth, Metastasis


Papers
More filters
Journal ArticleDOI
TL;DR: The solvent properties of ionic liquids, their effects on enzyme performance such as activity, stability and selectivity, and their applications in biocatalysis are discussed.

629 citations

Journal ArticleDOI
20 Feb 2020-Cell
TL;DR: An atlas of >32,000 single-EC transcriptomes from 11 mouse tissues was constructed and 78 EC subclusters were identified, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues and provides a powerful discovery tool and resource value.

624 citations

Journal ArticleDOI
TL;DR: It is demonstrated that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate.
Abstract: Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCFCOI1 E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which protein directly binds to jasmonoyl-isoleucine (JA-Ile)/coronatine (COR) and serves as a receptor for jasmonate, we built a high-quality structural model of COI1 and performed molecular modeling of COI1–jasmonate interactions. Our results imply that COI1 has the structural traits for binding JA-Ile or COR. The direct binding of these molecules with COI1 was further examined using a combination of molecular and biochemical approaches. First, we used the immobilized jasmonate approach to show that the COI1 protein in crude leaf extracts can bind to the jasmonate moiety of JA-Ile. Second, we employed surface plasmon resonance technology with purified COI1 and JAZ1 protein to reveal the interaction among COI1, JA-Ile, and JAZ1. Finally, we used the photoaffinity labeling technology to show the direct binding of COR with purified insect-expressed COI1. Taken together, these results demonstrate that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate.

623 citations

Journal ArticleDOI
Qingyu Liao1, Na Li1, Shuaixing Jin1, Guowei Yang1, Chengxin Wang1 
07 May 2015-ACS Nano
TL;DR: These excellent electrochemical performances, as a result of the particular structure of VAGN and the flexibility of the carbon fabric, suggest that these composites have an enormous potential in energy application.
Abstract: We have synthesized the hybrid supercapacitor electrode of Co3O4 nanoparticles on vertically aligned graphene nanosheets (VAGNs) supported by carbon fabric. The VAGN served as an excellent backbone together with the carbon fabric, enhancing composites to a high specific capacitance of 3480 F/g, approaching the theoretical value (3560 F/g). A highly flexible all-solid-state symmetric supercapacitor device was fabricated by two pieces of our Co3O4/VAGN/carbon fabric hybrid electrode. The device is suitable for different bending angles and delivers a high capacitance (580 F/g), good cycling ability (86.2% capacitance retention after 20 000 cycles), high energy density (80 Wh/kg), and high power density (20 kW/kg at 27 Wh/kg). These excellent electrochemical performances, as a result of the particular structure of VAGN and the flexibility of the carbon fabric, suggest that these composites have an enormous potential in energy application.

622 citations

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20 kton multi-purpose underground liquid scintillator detector with the determination of the neutrino mass hierarchy as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\to K^++\bar u$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

622 citations


Authors

Showing all 115971 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Yang Gao1682047146301
Yang Yang1642704144071
Peter Carmeliet164844122918
Frank J. Gonzalez160114496971
Xiang Zhang1541733117576
Rui Zhang1512625107917
Seeram Ramakrishna147155299284
Joseph J.Y. Sung142124092035
Joseph Lau140104899305
Bin Liu138218187085
Georgios B. Giannakis137132173517
Kwok-Yung Yuen1371173100119
Shu Li136100178390
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

National University of Singapore
165.4K papers, 5.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023349
20221,547
202115,595
202013,930
201911,766