scispace - formally typeset
Search or ask a question
Institution

University of Düsseldorf

EducationDüsseldorf, Germany
About: University of Düsseldorf is a education organization based out in Düsseldorf, Germany. It is known for research contribution in the topics: Population & Diabetes mellitus. The organization has 25225 authors who have published 49155 publications receiving 1946434 citations.


Papers
More filters
Journal ArticleDOI
20 Mar 2020-Science
TL;DR: Results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness and find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function.
Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.

436 citations

Journal ArticleDOI
TL;DR: The new version of Evolview was designed to provide simple tree uploads, manipulation and viewing options with additional annotation types, and the ‘dataset system’ used for visualizing tree information has evolved substantially from the previous version.
Abstract: Evolview is an interactive tree visualization tool designed to help researchers in visualizing phylogenetic trees and in annotating these with additional information. It offers the user with a platform to upload trees in most common tree formats, such as Newick/Phylip, Nexus, Nhx and PhyloXML, and provides a range of visualization options, using fifteen types of custom annotation datasets. The new version of Evolview was designed to provide simple tree uploads, manipulation and viewing options with additional annotation types. The 'dataset system' used for visualizing tree information has evolved substantially from the previous version, and the user can draw on a wide range of additional example visualizations. Developments since the last public release include a complete redesign of the user interface, new annotation dataset types, additional tree visualization styles, full-text search of the documentation, and some backend updates. The project management aspect of Evolview was also updated, with a unified approach to tree and project management and sharing. Evolview is freely available at: https://www.evolgenius.info/evolview/.

436 citations

Journal ArticleDOI
TL;DR: The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems.
Abstract: Significance: The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O2 and H2O2 contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Recent Advances: Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Critical Issues: Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be lea...

435 citations

Journal ArticleDOI
TL;DR: Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator.
Abstract: The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

435 citations

Journal ArticleDOI
TL;DR: This review summarizes and assesses recent theoretical and experimental advances, with special emphasis on the effective interaction between charge-stabilized colloids, in the bulk or in confined geometries, and on the ambiguities of defining an effective charge of the colloidal particles.
Abstract: This review summarizes and assesses recent theoretical and experimental advances, with special emphasis on the effective interaction between charge-stabilized colloids, in the bulk or in confined geometries, and on the ambiguities of defining an effective charge of the colloidal particles. Some consideration is given to the often neglected discrete solvent effects.

434 citations


Authors

Showing all 25575 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Roderick T. Bronson169679107702
Stanley B. Prusiner16874597528
Ralph A. DeFronzo160759132993
Monique M.B. Breteler15954693762
Thomas Meitinger155716108491
Karl Zilles13869272733
Ruben C. Gur13674161312
Alexis Brice13587083466
Michael Schmitt1342007114667
Michael Weller134110591874
Helmut Sies13367078319
Peter T. Fox13162283369
Yuri S. Kivshar126184579415
Markus M. Nöthen12594383156
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

96% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Pittsburgh
201K papers, 9.6M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022470
20213,130
20202,721
20192,507
20182,439