scispace - formally typeset
Search or ask a question
Institution

University of Guelph

EducationGuelph, Ontario, Canada
About: University of Guelph is a education organization based out in Guelph, Ontario, Canada. It is known for research contribution in the topics: Population & Gene. The organization has 26542 authors who have published 50553 publications receiving 1715255 citations. The organization is also known as: U of G & Guelph University.


Papers
More filters
Journal ArticleDOI
TL;DR: The objective of this paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health.
Abstract: On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans, and there have been countless numbers of disease outbreaks and poisonings throughout history resulting from exposure to untreated or poorly treated drinking water. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often globally ubiquitous in waters from which drinking water is derived. With this latter point in mind, the objective of this commission paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health. In assessing the relative risk of toxic contaminants in drinking water to humans, we have organized our discussion to follow the classical risk assessment paradigm, with emphasis placed on risk characterization. In doing so, we have focused predominantly on toxic contaminants that have had a demonstrated or potential effect on human health via exposure through drinking water. In the risk assessment process, understanding the sources and pathways for contaminants in the environment is a crucial step in addressing (and reducing) uncertainty associated with estimating the likelihood of exposure to contaminants in drinking water. More importantly, understanding the sources and pathways of contaminants strengthens our ability to quantify effects through accurate measurement and testing, or to predict the likelihood of effects based on empirical models. Understanding the sources, fate, and concentrations of chemicals in water, in conjunction with assessment of effects, not only forms the basis of risk characterization, but also provides critical information required to render decisions regarding regulatory initiatives, remediation, monitoring, and management. Our discussion is divided into two primary themes. First we discuss the major sources of contaminants from anthropogenic activities to aquatic surface and groundwater and the pathways along which these contaminants move to become incorporated into drinking water supplies. Second, we assess the health significance of the contaminants reported and identify uncertainties associated with exposures and potential effects. Loading of contaminants to surface waters, groundwater, sediments, and drinking water occurs via two primary routes: (1) point-source pollution and (2) non-point-source pollution. Point-source pollution originates from discrete sources whose inputs into aquatic systems can often be defined in a spatially explicit manner. Examples of point-source pollution include industrial effluents (pulp and paper mills, steel plants, food processing plants), municipal sewage treatment plants and combined sewage-storm-water overflows, resource extraction (mining), and land disposal sites (landfill sites, industrial impoundments). Non-point-source pollution, in contrast, originates from poorly defined, diffuse sources that typically occur over broad geographical scales. Examples of non-point-source pollution include agricultural runoff (pesticides, pathogens, and fertilizers), storm-water and urban runoff, and atmospheric deposition (wet and dry deposition of persistent organic pollutants such as polychlorinated biphenyls [PCBs] and mercury). Within each source, we identify the most important contaminants that have either been demonstrated to pose significant risks to human health and/or aquatic ecosystem integrity, or which are suspected of posing such risks. Examples include nutrients, metals, pesticides, persistent organic pollutants (POPs), chlorination by-products, and pharmaceuticals. Due to the significant number of toxic contaminants in the environment, we have necessarily restricted our discussion to those chemicals that pose risks to human health via exposure through drinking water. A comprehensive and judicious consideration of the full range of contaminants that occur in surface waters, sediments, and drinking water would be a large undertaking and clearly beyond the scope of this article. However, where available, we have provided references to relevant literature to assist the reader in undertaking a detailed investigation of their own. The information collected on specific chemicals within major contaminant classes was used to determine their relative risk using the hazard quotient (HQ) approach. Hazard quotients are the most widely used method of assessing risk in which the exposure concentration of a stressor, either measured or estimated, is compared to an effect concentration (e.g., no-observed-effect concentration or NOEC). A key goal of this assessment was to develop a perspective on the relative risks associated with toxic contaminants that occur in drinking water. Data used in this assessment were collected from literature sources and from the Drinking Water Surveillance Program (DWSP) of Ontario. For many common contaminants, there was insufficient environmental exposure (concentration) information in Ontario drinking water and groundwater. Hence, our assessment was limited to specific compounds within major contaminant classes including metals, disinfection by-products, pesticides, and nitrates. For each contaminant, the HQ was estimated by expressing the maximum concentration recorded in drinking water as a function of the water quality guideline for that compound. There are limitations to using the hazard quotient approach of risk characterization. For example, HQs frequently make use of worst-case data and are thus designed to be protective of almost all possible situations that may occur. However, reduction of the probability of a type II error (false negative) through the use of very conservative application factors and assumptions can lead to the implementation of expensive measures of mitigation for stressors that may pose little threat to humans or the environment. It is important to realize that our goal was not to conduct a comprehensive, in-depth assessment of risk for each chemical; more comprehensive assessments of managing risks associated with drinking water are addressed in a separate issue paper by Krewski et al. (2001a). Rather, our goal was to provide the reader with an indication of the relative risk of major contaminant classes as a basis for understanding the risks associated with the myriad forms of toxic pollutants in aquatic systems and drinking water. For most compounds, the estimated HQs were 1 in some treated distribution waters (water distributed to households). These latter compounds were further assessed using a probabilistic approach; these assessments indicated that the maximum allowable concentrations (MAC) or interim MACs for the respective compounds were exceeded <5% of the time. In other words, the probability of finding these compounds in drinking water at levels that pose risk to humans through ingestion of drinking water is low. Our review has been carried out in accordance with the conventional principles of risk assessment. Application of the risk assessment paradigm requires rigorous data on both exposure and toxicity in order to adequately characterize potential risks of contaminants to human health and ecological integrity. Weakness rendered by poor data, or lack of data, in either the exposure or effects stages of the risk assessment process significantly reduces the confidence that can be placed in the overall risk assessment. (ABSTRACT TRUNCATED)

438 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A large-scale study of North American trees reveals how different soil-associated fungi can either help or hinder tree growth, and suggests mycorrhizal type could be an important contributor to population regulation and community structure in temperate forests.
Abstract: Feedback with soil biota is an important determinant of terrestrial plant diversity. However, the factors regulating plant-soil feedback, which varies from positive to negative among plant species, remain uncertain. In a large-scale study involving 55 species and 550 populations of North American trees, the type of mycorrhizal association explained much of the variation in plant-soil feedbacks. In soil collected beneath conspecifics, arbuscular mycorrhizal trees experienced negative feedback, whereas ectomycorrhizal trees displayed positive feedback. Additionally, arbuscular mycorrhizal trees exhibited strong conspecific inhibition at multiple spatial scales, whereas ectomycorrhizal trees exhibited conspecific facilitation locally and less severe conspecific inhibition regionally. These results suggest that mycorrhizal type, through effects on plant-soil feedbacks, could be an important contributor to population regulation and community structure in temperate forests.

436 citations

Journal ArticleDOI
TL;DR: Random amplified polymorphic DNA (RAPD) analysis appears to offer a cost- and time-effective alternative to restriction fragment-length polymorphism (RFLP) analysis, but concerns about the ability to compare RAPD results from one laboratory to another have not been addressed effectively.
Abstract: Random amplified polymorphic DNA (RAPD) analysis appears to offer a cost- and time-effective alternative to restriction fragment-length polymorphism (RFLP) analysis. However, concerns about the ability to compare RAPD results from one laboratory to another have not been addressed effectively. DNA fragments that were amplified by five primers and shown to be reproducibly polymorphic between two oat cultivars (within the Ottawa laboratory) were tested in six other laboratories in North America. Four of the six participants amplified very few or no fragments using the Ottawa protocol. These same participants were able to generate a considerable number of amplified fragments by using their own protocols. The reproducibility of results among laboratories was affected by two factors. First, different laboratories amplified different size ranges of DNA fragments, and, consequently, small and large polymorphic fragments were not always reproduced. Second, although reproducible results were obtained with four of the primers, reproducible results were not obtained with the fifth primer, using the same reaction conditions. It is suggested that if the overall temperature profiles (especially the annealing temperature) inside the tubes are identical among the laboratories, then RAPD fragments are likely to be reproducible.

435 citations

Journal ArticleDOI
TL;DR: In this paper, current nanocomposite technologies to enhance the mechanical and barrier properties of synthetic polymers and biopolymers for food packaging are reviewed, including antimicrobial, oxygen scavenging, and shelf-life extension of food.
Abstract: In this article, current nanocomposite technologies to enhance the mechanical and barrier properties of synthetic polymers and biopolymers for food packaging are reviewed. In addition, nanotechnology developments targeting active packaging applications are discussed, including antimicrobial, oxygen scavenging, and shelf-life extension of food. Nanotechnologies that are currently being exploited for the development of intelligent packaging with enhanced communication function are presented, focusing mainly on oxygen, humidity and freshness indicators. Nanostructured coatings that enhance the barrier properties of packaging films are reviewed. And finally, the perspectives of nanotechnology in food packaging applications are discussed.

435 citations

Journal ArticleDOI
TL;DR: Water vapour and CO2 fluxes were measured using the eddy correlation method above and below the overstorey of a 21m tall aspen stand in the boreal forest of central Saskatchewan as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) as discussed by the authors.
Abstract: Water vapour and CO2 fluxes were measured using the eddy correlation method above and below the overstorey of a 21-m tall aspen stand in the boreal forest of central Saskatchewan as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Measurements were made at the 39.5-m and 4-m heights using 3-dimensional sonic anemometers (Kaijo-Denki and Solent, respectively) and closed-path gas analysers (LI-COR 6262) with 6-m and 4.7-m long heated sampling tubing, respectively. Continuous measurements were made from early October to mid-November 1993 and from early February to late-September 1994. Soil CO2 flux (respiration) was measured using a LI-COR 6000-09 soil chamber and soil evaporation was measured using Iysimetry. The leaf area index of the aspen and hazelnut understorey reached 1.8 and 3.3, respectively. The maximum daily evapotranspiration (E) rate was 5–6 mm d−1. Following leaf-out the hazelnut and soil accounted for 22% of the forest E. The estimated total E was 403 mm for 1994. About 88% of the precipitation in 1994 was lost as evapotranspiration. During the growing season, the magnitude of half-hourly eddy fluxes of CO2 from the atmosphere into the forest reached 1.2 mg CO2 m−2 s−1 (33 μmol C m−2 s−1) during the daytime. Downward eddy fluxes at the 4-m height were observed when the hazelnut was growing rapidly in June and July. Under well-ventilated night-time conditions, the eddy fluxes of CO2 above the aspen and hazelnut, corrected for canopy storage, increased exponentially with soil temperature at the 2-cm depth. Estimates of daytime respiration rates using these relationships agreed well with soil chamber measurements. During the 1994 growing season, the cumulative net ecosystem exchange (NEE) was -3.5 t C ha−1 y−1 (a net gain by the system). For 1994, cumulative NEE, ecosystem respiration (R) and gross ecosystem photosynthesis (GEP = R - NEE) were estimated to be -1.3, 8.9 and 10.2 t C ha−1 y−1 respectively. Gross photosynthesis of the hazelnut was 32% of GEP.

435 citations


Authors

Showing all 26778 results

NameH-indexPapersCitations
Dirk Inzé14964774468
Norbert Perrimon13861073505
Bobby Samir Acharya1331121100545
Eduardo Marbán12957949586
Benoît Roux12049362215
Fereidoon Shahidi11995157796
Stephen Safe11678460588
Mark A. Tarnopolsky11564442501
Robert C. Haddon11257752712
Milton H. Saier11170754496
Hans J. Vogel111126062846
Paul D. N. Hebert11153766288
Peter T. Katzmarzyk11061856484
John Campbell107115056067
Linda F. Nazar10631852092
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022391
20212,575
20202,547
20192,264
20182,155