scispace - formally typeset
Search or ask a question
Institution

University of Hamburg

EducationHamburg, Germany
About: University of Hamburg is a education organization based out in Hamburg, Germany. It is known for research contribution in the topics: Population & Laser. The organization has 45564 authors who have published 89286 publications receiving 2850161 citations. The organization is also known as: Hamburg University.


Papers
More filters
Journal ArticleDOI
TL;DR: Results from this study support the reliability and validity of thePHQ-4, PHQ-2, and GAD-2 as ultra-brief measures of depression and anxiety in the general population and can be used to compare a subject's scale score with those determined from a general population reference group.

1,469 citations

Posted ContentDOI
TL;DR: The wide spectrum of scientific applications of SAGA is highlighted in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.
Abstract: . The System for Automated Geoscientific Analyses (SAGA) is an open source geographic information system (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, a user friendly graphical user interface with many visualization options, a command line interpreter, and interfaces to interpreted languages like R and Python. The current version 2.1.4 offers more than 600 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Furthermore, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

1,459 citations

Journal ArticleDOI
TL;DR: In this article, uncertainty relations for the different coordinates of spacetime events are proposed, motivated by Heisenberg's principle and by Einstein's theory of classical gravity, and a model of Quantum Spacetime is discussed where the commutation relations exactly implement our uncertainty relations.
Abstract: We propose uncertainty relations for the different coordinates of spacetime events, motivated by Heisenberg's principle and by Einstein's theory of classical gravity. A model of Quantum Spacetime is then discussed where the commutation relations exactly implement our uncertainty relations.

1,453 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +976 moreInstitutions (107)
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Abstract: The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant’s mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

1,421 citations

Journal ArticleDOI
TL;DR: In this autopsy series, the authors found that SARS-CoV-2 has an organotropism beyond the respiratory tract, including the kidneys, heart, liver, and brai...
Abstract: Multiorgan and Renal Tropism of SARS-CoV-2 In this autopsy series, the authors found that SARS-CoV-2 has an organotropism beyond the respiratory tract, including the kidneys, heart, liver, and brai...

1,407 citations


Authors

Showing all 46072 results

NameH-indexPapersCitations
Rudolf Jaenisch206606178436
Bruce M. Psaty1811205138244
Stefan Schreiber1781233138528
Chris Sander178713233287
Dennis J. Selkoe177607145825
Daniel R. Weinberger177879128450
Ramachandran S. Vasan1721100138108
Bradley Cox1692150156200
Anders Björklund16576984268
J. S. Lange1602083145919
Hannes Jung1592069125069
Andrew D. Hamilton1511334105439
Jongmin Lee1502257134772
Teresa Lenz1501718114725
Stefanie Dimmeler14757481658
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

97% related

Technische Universität München
123.4K papers, 4M citations

95% related

University of Bern
79.4K papers, 3.1M citations

94% related

University of Zurich
124K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023282
2022817
20215,784
20205,492
20194,994
20184,587