scispace - formally typeset
Search or ask a question
Institution

University of Nebraska–Lincoln

EducationLincoln, Nebraska, United States
About: University of Nebraska–Lincoln is a education organization based out in Lincoln, Nebraska, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28059 authors who have published 61544 publications receiving 2139104 citations. The organization is also known as: Nebraska & UNL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Raman spectra of carbon films were analyzed via a best fit to computer-generated line shapes, used to simulate the $D$ and $G$ lines.
Abstract: Carbon films were prepared by ion-beam as well as rf-discharge deposition, and annealed at temperatures up to 950\ifmmode^\circ\else\textdegree\fi{}C. Raman spectra of these films, in the range 1000-1800 ${\mathrm{cm}}^{\ensuremath{-}1}$, were analyzed via a best fit to computer-generated line shapes, used to simulate the $D$ and $G$ lines. Our results are given in terms of the $\frac{I(D)}{I(G)}$ intensity ratio, line position, and linewidth as a function of anneal temperature. The $\frac{I(D)}{I(G)}$ ratio for the rf-discharge-deposited films shows a maximum, and there is a suggestion of similar behavior for the ion-beam-deposited films. This maximum indicates that crystallite growth is promoted by higher anneal temperatures. As suggested by comparison with theory, the down-shifted $G$ line position of 1536 ${\mathrm{cm}}^{\ensuremath{-}1}$ in the as-deposited films indicates the presence of bond-angle disorder. The similarly, down-shifted $D$ line position of \ensuremath{\sim}1283 ${\mathrm{cm}}^{\ensuremath{-}1}$ indicates that the as-deposited films may contain some fourfold-coordinated bonds as well as disorder. The shift of the $D$ and $G$ lines to asymptotes of 1353 and 1598 ${\mathrm{cm}}^{\ensuremath{-}1}$, respectively, as anneal temperature increases, indicates that the crystallites are dominated by threefold over fourfold coordination. The linewidths of both lines decrease in width with increasing anneal temperature. This is also consistent with the removal of bond-angle disorder and the increasing dominance of crystallites as annealing proceeds to higher temperatures.

1,011 citations

Journal ArticleDOI
TL;DR: The capability of the human visual system with respect to face identification, analysis of facial expressions, and classification based on physical features of the face are discussed.

1,008 citations

Journal ArticleDOI
TL;DR: In this article, color slide images of weeds among various soils and residues were digitized and analyzed for red, green, and blue (RGB) color content, and several indices of chromatic coordinates were studied, tested, and were successful in identifying weeds.
Abstract: Color slide images of weeds among various soils and residues were digitized and analyzed for red, green, and blue (RGB) color content. Red, green, and blue chromatic coordinates (rgb) of plants were very different from those of background soils and residue. To distinguish living plant material from a nonplant background, several indices of chromatic coordinates were studied, tested, and were successful in identifying weeds. The indices included r-g, g-b, (g-b)/ |r-g|, and 2g-r-b. A modified hue was also used to distinguish weeds from non-plant surfaces. The modified hue, 2g-r-b index, and the green chromatic coordinate distinguished weeds from a nonplant background (0.05 level of significance) better than other indices. However, the modified hue was the most computationally intense. These indices worked well for both nonshaded and shaded sunlit conditions. These indices could be used for sensor design for detecting weeds for spot spraying control.

1,006 citations

Journal ArticleDOI
TL;DR: JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis and might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively.
Abstract: Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography–mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g−1 fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g−1 FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.

1,001 citations

Journal ArticleDOI
23 Aug 2001-Nature
TL;DR: Simulations of the behaviour of water encapsulated in carbon nanotubes suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid–liquid critical point beyond which the distinction between solid and liquid phases disappears.
Abstract: Following their discovery1, carbon nanotubes have attracted interest not only for their unusual electrical and mechanical properties, but also because their hollow interior can serve as a nanometre-sized capillary2,3,4,5,6,7, mould8,9,10,11 or template12,13,14 in material fabrication. The ability to encapsulate a material in a nanotube also offers new possibilities for investigating dimensionally confined phase transitions15. Particularly intriguing is the conjecture16 that matter within the narrow confines of a carbon nanotube might exhibit a solid–liquid critical point17 beyond which the distinction between solid and liquid phases disappears. This unusual feature, which cannot occur in bulk material, would allow for the direct and continuous transformation of liquid matter into a solid. Here we report simulations of the behaviour of water encapsulated in carbon nanotubes that suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid–liquid critical point. Using carbon nanotubes with diameters ranging from 1.1 nm to 1.4 nm and applied axial pressures of 50 MPa to 500 MPa, we find that water can exhibit a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a continuous phase transformation into solid-like square or pentagonal ice nanotubes.

998 citations


Authors

Showing all 28272 results

NameH-indexPapersCitations
Donald P. Schneider2421622263641
Suvadeep Bose154960129071
David D'Enterria1501592116210
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
Andrew Askew140149699635
Mitchell Wayne1391810108776
Kenneth Bloom1381958110129
P. de Barbaro1371657102360
Randy Ruchti1371832107846
Ia Iashvili135167699461
Yuichi Kubota133169598570
Ilya Kravchenko132136693639
Andrea Perrotta131138085669
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022381
20212,809
20202,977
20192,846
20182,854