scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Context (language use). The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a search for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ) was performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC.
Abstract: A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q* decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton G[RS] decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' to WZ and G[RS] to WW in the all-jets final state. The mass limits on q* to qW, q* to qZ, W' to WZ, G[RS] to WW are the most stringent to date. A model with a "bulk" graviton G[Bulk] that decays into WW or ZZ bosons is also studied.

179 citations

Journal ArticleDOI
TL;DR: CyMATE as discussed by the authors is a tool for in-silico analysis of DNA sequences after bisulphite conversion of plant DNA, in which methylation is more divergent with respect to sequence context and biological relevance.
Abstract: Cytosine methylation is a hallmark of epigenetic information in the DNA of many fungi, vertebrates and plants. The technique of bisulphite genomic sequencing reveals the methylation state of every individual cytosine in a sequence, and thereby provides high-resolution data on epigenetic diversity; however, the manual evaluation and documentation of large amounts of data is laborious and error-prone. While some software is available for facilitating the analysis of mammalian DNA methylation, which is found nearly exclusively at CG sites, there is no software optimally suited for data from DNA with significant non-CG methylation. We describe CyMATE (Cytosine Methylation Analysis Tool for Everyone) for in silico analysis of DNA sequences after bisulphite conversion of plant DNA, in which methylation is more divergent with respect to sequence context and biological relevance. From aligned sequences, CyMATE includes and distinguishes methylation at CG, CHG and CHH (where H = A, C or T), and can extract both quantitative and qualitative data regarding general and pattern-specific methylation per sequence and per position, i.e. data for individual sites in a sequence and the epigenetic divergence within a sample. In addition, it can provide graphical output from alignments in either an overview or a 'zoom-in' view as pdf files. Detailed information, including a quality control of the sequencing data, is provided in text format. We applied CyMATE to the analysis of DNA methylation at transcriptionally silenced promoters in diploid and polyploid Arabidopsis and found significant hypermethylation, high stability of the methylated state independent of chromosome number, and non-redundant patterns of mC distribution. CyMATE is freely available for non-commercial use at http://www.gmi.oeaw.ac.at/CyMATE.

179 citations

Book ChapterDOI
01 Aug 1995
TL;DR: Model-based programming provides an alternative new paradigm that describes the tasks that users are expected to accomplish with a systems, the functional capabilities of a system, the style and requirements of the interface, the characteristics and preferences of the users, and the I/O techniques supported by the delivery platform.
Abstract: Currently, building a user interface involves creating a large procedural program. Model-based programming provides an alternative new paradigm. In the model-based paradigm, developers create a declarative model that describes the tasks that users are expected to accomplish with a system, the functional capabilities of a system, the style and requirements of the interface, the characteristics and preferences of the users, and the I/O techniques supported by the delivery platform. Based on the model, a much smaller procedural program then determines the behavior of the system.

178 citations

DOI
25 Nov 2021
TL;DR: In this paper, the development of 2D field-effect transistors for use in future VLSI technologies is reviewed, and the key performance indicators for aggressively scaled 2D transistors are discussed.
Abstract: Field-effect transistors based on two-dimensional (2D) materials have the potential to be used in very large-scale integration (VLSI) technology, but whether they can be used at the front end of line or at the back end of line through monolithic or heterogeneous integration remains to be determined. To achieve this, multiple challenges must be overcome, including reducing the contact resistance, developing stable and controllable doping schemes, advancing mobility engineering and improving high-κ dielectric integration. The large-area growth of uniform 2D layers is also required to ensure low defect density, low device-to-device variation and clean interfaces. Here we review the development of 2D field-effect transistors for use in future VLSI technologies. We consider the key performance indicators for aggressively scaled 2D transistors and discuss how these should be extracted and reported. We also highlight potential applications of 2D transistors in conventional micro/nanoelectronics, neuromorphic computing, advanced sensing, data storage and future interconnect technologies. This Review examines the development of field-effect transistors based on two-dimensional materials and considers the challenges that need to be addressed for the devices to be incorporated into very large-scale integration (VLSI) technology.

178 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,530
20202,811
20192,846
20182,650