scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Context (language use). The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work presents an overview about the effects of basic image attributes in high dynamic range tone mapping, and proposes a scheme of relationships between these attributes, leading to the definition of an overall image quality measure.

219 citations

Journal ArticleDOI
03 Oct 2018-Nature
TL;DR: For many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited.
Abstract: Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7–9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982–2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.

218 citations

Proceedings Article
01 Jan 2008
TL;DR: This paper presents a novel approach to automatic protocol reverse engineering that works by dynamically monitoring the execution of the application, analyzing how the program is processing the protocol messages that it receives, and is able to extract the format specification for different types of messages.
Abstract: Protocol reverse engineering is the process of extracting application-level specifications for network protocols. Such specifications are very helpful in a number of security-related contexts. For example, they are needed by intrusion detection systems to perform deep packet inspection, and they allow the implementation of black-box fuzzing tools. Unfortunately, manual reverse engineering is a time-consuming and tedious task. To address this problem, researchers have recently proposed systems that help to automate the process. These systems operate by analyzing traces of network traffic. However, there is limited information available at the network-level, and thus, the accuracy of the results is limited. In this paper, we present a novel approach to automatic protocol reverse engineering. Our approach works by dynamically monitoring the execution of the application, analyzing how the program is processing the protocol messages that it receives. This is motivated by the insight that an application encodes the complete protocol and represents the authoritative specification of the inputs that it can accept. In a first step, we extract information about the fields of individual messages. Then, we aggregate this information to determine a more general specification of the message format, which can include optional or alternative fields, and repetitions. We have applied our techniques to a number of real-world protocols and server applications. Our results demonstrate that we are able to extract the format specification for different types of messages. Using these specifications, we then automatically generate appropriate parser code.

218 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the interplay of community risk coping culture, flooding damage and economic growth in urban floodplains, focusing on three aspects: (i) collective memory, (ii) risk-taking attitude, and (iii) trust of the community in risk reduction measures.

218 citations

Journal ArticleDOI
TL;DR: In this article, the photon-energy-dependent emission timing of electrons, released from the helium ground state by an extreme-ultraviolet photon, either leaving the ion in its ground state or exciting it into a shake-up state.
Abstract: Photoemission of an electron is commonly treated as a one-particle phenomenon. With attosecond streaking spectroscopy we observe the breakdown of this single active-electron approximation by recording up to six attoseconds retardation of the dislodged photoelectron due to electronic correlations. We recorded the photon-energy-dependent emission timing of electrons, released from the helium ground state by an extreme-ultraviolet photon, either leaving the ion in its ground state or exciting it into a shake-up state. We identify an optical field-driven d.c. Stark shift of charge-asymmetric ionic states formed after the entangled photoemission as a key contribution to the observed correlation time shift. These findings enable a complete wavepacket reconstruction and are universal for all polarized initial and final states. Sub-attosecond agreement with quantum mechanical ab initio modelling allows us to determine the absolute zero of time in the photoelectric effect to a precision better than 1/25th of the atomic unit of time. Photoemission is not a simple process and it is not instantaneous. Delays of a few attoseconds have now been measured in helium and it seems that they are partly due to electronic correlations.

218 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,530
20202,811
20192,846
20182,650