scispace - formally typeset
Search or ask a question
Institution

Vienna University of Technology

EducationVienna, Austria
About: Vienna University of Technology is a education organization based out in Vienna, Austria. It is known for research contribution in the topics: Laser & Context (language use). The organization has 16723 authors who have published 49341 publications receiving 1302168 citations.


Papers
More filters
Proceedings ArticleDOI
16 Mar 1998
TL;DR: This work uses information in a release history of a system to uncover logical dependencies and change patterns among modules, identifying logical coupling among modules in such a way that potential structural shortcomings can be identified and further examined, pointing to restructuring or reengineering opportunities.
Abstract: Code-based metrics such as coupling and cohesion are used to measure a system's structural complexity. But dealing with large systems-those consisting of several millions of lines-at the code level faces many problems. An alternative approach is to concentrate on the system's building blocks such as programs or modules as the unit of examination. We present an approach that uses information in a release history of a system to uncover logical dependencies and change patterns among modules. We have developed the approach by working with 20 releases of a large Telecommunications Switching System. We use release information such as version numbers of programs, modules, and subsystems together with change reports to discover common change behavior (i.e. change patterns) of modules. Our approach identifies logical coupling among modules in such a way that potential structural shortcomings can be identified and further examined, pointing to restructuring or reengineering opportunities.

482 citations

Journal ArticleDOI
TL;DR: In this paper, the NIR spectra of wood and wood products contain information regarding their chemical composition and molecular structure, which can influence physical properties and performance, however, they do not reveal the properties of wood products.
Abstract: Near infrared (NIR) spectra of wood and wood products contain information regarding their chemical composition and molecular structure. Both influence physical properties and performance, however, ...

480 citations

Journal ArticleDOI
15 Feb 2017-Wear
TL;DR: In this paper, the effects of surface textures under the operative lubrication regimes in the Stribeck curve, with a clear distinction between conformal-and non-conformal contacts, are discussed.

478 citations

Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: Across all six continents studied, afternoon rain falls preferentially over soils that are relatively dry compared to the surrounding area, and a positive feedback of soil moisture on simulated precipitation does dominate in six state-of-the-art global weather and climate models—a difference that may contribute to excessive simulated droughts in large-scale models.
Abstract: Analysis of observations on six continents reveals a global preference for afternoon rain to fall on locally drier soils—contrary to the predictions of large-scale climate models, and suggesting that such models may exaggerate the occurrence of droughts. Soil moisture is known to influence precipitation across a range of scales in time and space, and most models suggest that wetter soils promote higher atmospheric moisture content and favour the local development of storms. But this analysis of global precipitation data from a combination of weather satellites shows that — especially in semi-arid regions — afternoon precipitation is more likely over dry soil than over wet soil. The findings suggest that current climate models may be missing fundamental processes regulating convection and land–atmosphere interactions. Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere1,2. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity1,3, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world, owing to a lack of observational evidence and uncertainty in large-scale models4. Here we present a global-scale observational analysis of the coupling between soil moisture and precipitation. We show that across all six continents studied, afternoon rain falls preferentially over soils that are relatively dry compared to the surrounding area. The signal emerges most clearly in the observations over semi-arid regions, where surface fluxes are sensitive to soil moisture, and convective events are frequent. Mechanistically, our results are consistent with enhanced afternoon moist convection driven by increased sensible heat flux over drier soils, and/or mesoscale variability in soil moisture. We find no evidence in our analysis of a positive feedback—that is, a preference for rain over wetter soils—at the spatial scale (50–100 kilometres) studied. In contrast, we find that a positive feedback of soil moisture on simulated precipitation does dominate in six state-of-the-art global weather and climate models—a difference that may contribute to excessive simulated droughts in large-scale models.

475 citations

Journal ArticleDOI
TL;DR: In this paper, the photoconductivity of biased mono-and bilayer molybdenum disulfide field effect transistors was investigated and photovoltaic and photoconductive effects were identified.
Abstract: Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photogain. The photovoltaic effect is described as a shift in transistor threshold voltage due to charge transfer from the channel to nearby molecules, including SiO2 surface-bound water. The photoconductive effect is attributed to the trapping of carriers in band tail states in the molybdenum disulfide itself. A simple model is presented that reproduces our experimental observations, such as the dependence on incident optical power and gate voltage. Our findings offer design and engineering strategies for atomically thin molybdenum disulfide photodetectors, and we anticipate that the results are generalizable to other transition metal dichalcogenides as well.

475 citations


Authors

Showing all 16934 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
Wolfgang Wagner1562342123391
Marco Zanetti1451439104610
Sridhara Dasu1401675103185
Duncan Carlsmith1381660103642
Ulrich Heintz136168899829
Matthew Herndon133173297466
Frank Würthwein133158494613
Alain Hervé132127987763
Manfred Jeitler132127889645
David Taylor131246993220
Roberto Covarelli131151689981
Patricia McBride129123081787
David Smith1292184100917
Lindsey Gray129117081317
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022379
20212,530
20202,811
20192,846
20182,650