scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Research in 2018"


Journal ArticleDOI
TL;DR: A user-friendly, multi-platform freeware which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities called LIFEx is presented.
Abstract: Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy.Significance: This study presents a user-friendly, multi-platform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. Cancer Res; 78(16); 4786-9. ©2018 AACR.

603 citations


Journal ArticleDOI
TL;DR: It is found that hypoxic exosomes derived from pancreatic cancer cells activate macrophages to the M2 phenotype in a HIF1a or HIF2a-dependent manner, which then facilitates the migration, invasion, and epithelial-mesenchymal transition of pancreaticcancer cells.
Abstract: Exosomes are emerging as important mediators of the cross-talk between tumor cells and the microenvironment. However, the mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic cancer remain largely unknown. Here, we found that hypoxic exosomes derived from pancreatic cancer cells activate macrophages to the M2 phenotype in a HIF1a or HIF2a-dependent manner, which then facilitates the migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells. Given that exosomes have been shown to transport miRNAs to alter cellular functions, we discovered that miR-301a-3p was highly expressed in hypoxic pancreatic cancer cells and enriched in hypoxic pancreatic cancer cell-derived exosomes. Circulating exosomal miR-301a-3p levels positively associated with depth of invasion, lymph node metastasis, late TNM stage, and poor prognosis of pancreatic cancer. Hypoxic exosomal miR-301a-3p induced the M2 polarization of macrophages via activation of the PTEN/PI3Kγ signaling pathway. Coculturing of pancreatic cancer cells with macrophages in which miR-301a-3p was upregulated or treated with hypoxic exosomes enhanced their metastatic capacity. Collectively, these data indicate that pancreatic cancer cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, which then polarize macrophages to promote malignant behaviors of pancreatic cancer cells. Targeting exosomal miR-301a-3p may provide a potential diagnosis and treatment strategy for pancreatic cancer.Significance: These findings identify an exosomal miRNA critical for microenvironmental cross-talk that may prove to be a potential target for diagnosis and treatment of pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4586/F1.large.jpg Cancer Res; 78(16); 4586-98. ©2018 AACR.

446 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the cytosolic lncRNA P53RRA is downregulated in cancers and functions as a tumor suppressor by inhibiting cancer progression, thus regulating p53 modulators to suppress cancer progression.
Abstract: Long noncoding RNAs (lncRNA) have been associated with various types of cancer; however, the precise role of many lncRNAs in tumorigenesis remains elusive. Here we demonstrate that the cytosolic lncRNA P53RRA is downregulated in cancers and functions as a tumor suppressor by inhibiting cancer progression. Chromatin remodeling proteins LSH and Cfp1 silenced or increased P53RRA expression, respectively. P53RRA bound Ras GTPase-activating protein-binding protein 1 (G3BP1) using nucleotides 1 and 871 of P53RRA and the RRM interaction domain of G3BP1 (aa 177-466). The cytosolic P53RRA-G3BP1 interaction displaced p53 from a G3BP1 complex, resulting in greater p53 retention in the nucleus, which led to cell-cycle arrest, apoptosis, and ferroptosis. P53RRA promoted ferroptosis and apoptosis by affecting transcription of several metabolic genes. Low P53RRA expression significantly correlated with poor survival in patients with breast and lung cancers harboring wild-type p53. These data show that lncRNAs can directly interact with the functional domain of signaling proteins in the cytoplasm, thus regulating p53 modulators to suppress cancer progression.Significance: A cytosolic lncRNA functions as a tumor suppressor by activating the p53 pathway. Cancer Res; 78(13); 3484-96. ©2018 AACR.

293 citations


Journal ArticleDOI
TL;DR: A more complete understanding of macrophage diversity in tumors could lead to the development of more selective therapies to restore the formidable, anticancer functions of these cells.
Abstract: Tumor-associated macrophages are a major constituent of malignant tumors and are known to stimulate key steps in tumor progression In our review in this journal in 2006, we postulated that functionally distinct subsets of these cells exist in different areas within solid tumors Here, we review the many experimental and clinical studies conducted since then to investigate the function(s), regulation, and clinical significance of macrophages in these sites The latter include three sites of cancer cell invasion, tumor nests, the tumor stroma, and areas close to, or distant from, the tumor vasculature A more complete understanding of macrophage diversity in tumors could lead to the development of more selective therapies to restore the formidable, anticancer functions of these cells Cancer Res; 78(19); 5492-503 ©2018 AACR

284 citations


Journal ArticleDOI
TL;DR: This study provides new evidence that the antitumor effect of paclitaxel occurs in part via reactivation of the immune response against cancer, guiding tumor-associated macrophages toward the M1-like antitumors phenotype.
Abstract: Paclitaxel is an antineoplastic agent widely used to treat several solid tumor types. The primary mechanism of action of paclitaxel is based on microtubule stabilization inducing cell-cycle arrest. Here, we use several tumor models to show that paclitaxel not only induces tumor cell-cycle arrest, but also promotes antitumor immunity. In vitro, paclitaxel reprogrammed M2-polarized macrophages to the M1-like phenotype in a TLR4-dependent manner, similarly to LPS. Paclitaxel also modulated the tumor-associated macrophage (TAM) profile in mouse models of breast and melanoma tumors; gene expression analysis showed that paclitaxel altered the M2-like signature of TAMs toward an M1-like profile. In mice selectively lacking TLR4 on myeloid cells, for example, macrophages (LysM-Cre+/−/TLR4fl/fl), the antitumor effect of paclitaxel was attenuated. Gene expression analysis of tumor samples from patients with ovarian cancer before and after treatment with paclitaxel detected an enrichment of genes linked to the M1 macrophage activation profile (IFNγ-stimulated macrophages). These findings indicate that paclitaxel skews TAMs toward an immunocompetent profile via TLR4, which might contribute to the antitumor effect of paclitaxel and provide a rationale for new combination regimens comprising paclitaxel and immunotherapies as an anticancer treatment. Significance: This study provides new evidence that the antitumor effect of paclitaxel occurs in part via reactivation of the immune response against cancer, guiding tumor-associated macrophages toward the M1-like antitumor phenotype. Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/78/20/5891/F1.large.jpg. Cancer Res; 78(20); 5891–900. ©2018 AACR. See related commentary by Garassino et al., p. 5729

259 citations


Journal ArticleDOI
TL;DR: A user-friendly one-stop shop web tool called TIP, which has the capability to rapidly analyze and intuitively visualize the activity of anticancer immunity and the extent of tumor-infiltrating immune cells across the seven-step cancer-immunity cycle, is developed.
Abstract: Systematically tracking the tumor immunophenotype is required to understand the mechanisms of cancer immunity and improve clinical benefit of cancer immunotherapy. However, progress in current research is hindered by the lack of comprehensive immune activity resources and easy-to-use tools for biologists, clinicians, and researchers to conveniently evaluate immune activity during the "cancer-immunity cycle." We developed a user-friendly one-stop shop web tool called TIP to comprehensively resolve tumor immunophenotype. TIP has the capability to rapidly analyze and intuitively visualize the activity of anticancer immunity and the extent of tumor-infiltrating immune cells across the seven-step cancer-immunity cycle. Also, we precalculated the pan-cancer immunophenotype for 11,373 samples from 33 The Cancer Genome Atlas human cancers that allow users to obtain and compare immunophenotype of pan-cancer samples. We expect TIP to be useful in a large number of emerging cancer immunity studies and development of effective immunotherapy biomarkers. TIP is freely available for use at http://biocc.hrbmu.edu.cn/TIP/. SIGNIFICANCE: TIP is a one-stop shop platform that can help biologists, clinicians, and researchers conveniently evaluate anticancer immune activity with their own gene expression data.See related commentary by Hirano, p. 6536.

251 citations


Journal ArticleDOI
TL;DR: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function.
Abstract: The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ecto-nucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNγ production by responder CD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNγ, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induce CD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule on CD8+ T cells, with implications for defining a biomarker of T-cell dysfunction and a target for immunotherapeutic intervention.Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function. Cancer Res; 78(1); 115-28. ©2017 AACR.

250 citations


Journal ArticleDOI
TL;DR: Harnessing macrophage-derived exosomes as conveyers of antagomiRs augments the effect of chemotherapy against cancer, opening new therapeutic options against malignancies where resistance to nucleotide analogs remains an obstacle to overcome.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is known for its resistance to gemcitabine, which acts to inhibit cell growth by termination of DNA replication. Tumor-associated macrophages (TAM) were recently shown to contribute to gemcitabine resistance; however, the exact mechanism of this process is still unclear. Using a genetic mouse model of PDAC and electron microscopy analysis, we show that TAM communicate with the tumor microenvironment via secretion of approximately 90 nm vesicles, which are selectively internalized by cancer cells. Transfection of artificial dsDNA (barcode fragment) to murine peritoneal macrophages and injection to mice bearing PDAC tumors revealed a 4-log higher concentration of the barcode fragment in primary tumors and in liver metastasis than in normal tissue. These macrophage-derived exosomes (MDE) significantly decreased the sensitivity of PDAC cells to gemcitabine, in vitro and in vivo This effect was mediated by the transfer of miR-365 in MDE. miR-365 impaired activation of gemcitabine by upregulation of the triphospho-nucleotide pool in cancer cells and the induction of the enzyme cytidine deaminase; the latter inactivates gemcitabine. Adoptive transfer of miR-365 in TAM induced gemcitabine resistance in PDAC-bearing mice, whereas immune transfer of the miR-365 antagonist recovered the sensitivity to gemcitabine. Mice deficient of Rab27 a/b genes, which lack exosomal secretion, responded significantly better to gemcitabine than did wildtype. These results identify MDE as key regulators of gemcitabine resistance in PDAC and demonstrate that blocking miR-365 can potentiate gemcitabine response.Significance: Harnessing macrophage-derived exosomes as conveyers of antagomiRs augments the effect of chemotherapy against cancer, opening new therapeutic options against malignancies where resistance to nucleotide analogs remains an obstacle to overcome. Cancer Res; 78(18); 5287-99. ©2018 AACR.

230 citations


Journal ArticleDOI
TL;DR: Using spatial transcriptomics to generate gene expression profiles in melanoma lymph node metastases reveals a complex transcriptional landscape in a spatial context, which is essential for understanding the multiple components of tumor progression and therapy outcome.
Abstract: Cutaneous malignant melanoma (melanoma) is characterized by a high mutational load, extensive intertumoral and intratumoral genetic heterogeneity, and complex tumor microenvironment (TME) interactions Further insights into the mechanisms underlying melanoma are crucial for understanding tumor progression and responses to treatment Here we adapted the technology of spatial transcriptomics (ST) to melanoma lymph node biopsies and successfully sequenced the transcriptomes of over 2,200 tissue domains Deconvolution combined with traditional approaches for dimensional reduction of transcriptome-wide data enabled us to both visualize the transcriptional landscape within the tissue and identify gene expression profiles linked to specific histologic entities Our unsupervised analysis revealed a complex spatial intratumoral composition of melanoma metastases that was not evident through morphologic annotation Each biopsy showed distinct gene expression profiles and included examples of the coexistence of multiple melanoma signatures within a single tumor region as well as shared profiles for lymphoid tissue characterized according to their spatial location and gene expression profiles The lymphoid area in close proximity to the tumor region displayed a specific expression pattern, which may reflect the TME, a key component to fully understanding tumor progression In conclusion, using the ST technology to generate gene expression profiles reveals a detailed landscape of melanoma metastases This should inspire researchers to integrate spatial information into analyses aiming to identify the factors underlying tumor progression and therapy outcomeSignificance: Applying ST technology to gene expression profiling in melanoma lymph node metastases reveals a complex transcriptional landscape in a spatial context, which is essential for understanding the multiple components of tumor progression and therapy outcome Cancer Res; 78(20); 5970-9 ©2018 AACR

222 citations


Journal ArticleDOI
TL;DR: It is reported that Twist1 regulates Cullin2 (Cul2) circular RNA to increase expression of vimentin in EMT and provides potential therapeutic targets for treatment of HCC and new insight for circular RNA (circRNA)-based diagnostic and therapeutic strategies.
Abstract: Twist is a critical epithelial-mesenchymal transition (EMT)-inducing transcription factor that increases expression of vimentin. How Twist1 regulates this expression remains unclear. Here, we report that Twist1 regulates Cullin2 (Cul2) circular RNA to increase expression of vimentin in EMT. Twist1 bound the Cul2 promoter to activate its transcription and to selectively promote expression of Cul2 circular RNA (circ-10720), but not mRNA. circ-10720 positively correlated with Twist1, tumor malignance, and poor prognosis in hepatocellular carcinoma (HCC). Twist1 promoted vimentin expression by increasing levels of circ-10720, which can absorb miRNAs that target vimentin. circ-10720 knockdown counteracted the tumor-promoting activity of Twist1 in vitro and in patient-derived xenograft and diethylnitrosamine-induced TetOn-Twist1 transgenic mouse HCC models. These data unveil a mechanism by which Twist1 regulates vimentin during EMT. They also provide potential therapeutic targets for HCC treatment and provide new insight for circular RNA (circRNA)-based diagnostic and therapeutic strategies.Significance: A circRNA-based mechanism drives Twist1-mediated regulation of vimentin during EMT and provides potential therapeutic targets for treatment of HCC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4150/F1.large.jpg Cancer Res; 78(15); 4150-62. ©2018 AACR.

212 citations


Journal ArticleDOI
TL;DR: Microarray profiling of circRNA/lncRNA/mRNA in glioblastoma identifies circNT5E as an oncogenic circular RNA and a sponge of miR-422a.
Abstract: Circular RNA and long noncoding RNA function as efficient miRNA sponges that regulate gene expression in eukaryotes. However, the sponges of functional miRNAs in glioblastoma remain largely unknown. Here, we identify a subset of circRNAs and lncRNAs that are specifically increased in miR-422a-downregulated glioblastoma tissues. We characterized a novel circRNA derived from NT5E, named circNT5E, that is regulated by ADARB2 binding to sites flanking circRNA-forming introns. We hypothesized that circNT5E may serve as a sponge against miR-422a in glioblastoma tumorigenesis. circNT5E controlled multiple pathologic processes, including cell proliferation, migration, and invasion. circNT5E directly bound miR-422a and inhibited miR-422a activity. Furthermore, circNT5E was observed to sponge other miRNAs, exhibiting tumor suppressor-like features in glioblastoma. Taken together, these findings highlight a novel oncogenic function of circRNA in glioblastoma tumorigenesis.Significance: Microarray profiling of circRNA/lncRNA/mRNA in glioblastoma identifies circNT5E as an oncogenic circular RNA and a sponge of miR-422a. Cancer Res; 78(17); 4812-25. ©2018 AACR.

Journal ArticleDOI
TL;DR: ZEB1 is a key determinant of cell plasticity, endowing cells with the capacity to withstand an aberrant mitogenic activity, with a profound impact on the genetic history of tumorigenesis, and to adapt to the multiple constraints encountered over the course of tumor development.
Abstract: ZEB1 is a prime element of a network of transcription factors that controls epithelial-to-mesenchymal transition (EMT), a reversible embryonic transdifferentiation program that allows partial or complete transition from an epithelial to a mesenchymal state. Aberrant expression of ZEB1 has been reported in a variety of human cancers, where it is generally believed to foster migration, invasion, and metastasis. Over the past few years, in vitro and in vivo observations have highlighted unsuspected intrinsic oncogenic functions of ZEB1 that impact tumorigenesis from its earliest stages. Located downstream of regulatory processes that integrate microenvironmental signals and directly implicated in feedback loops controlled by miRNAs, ZEB1 appears to be a central switch that determines cell fate. Its expression fosters malignant transformation through the mitigation of critical oncosuppressive pathways and through the conferment of stemness properties. ZEB1 is also a key determinant of cell plasticity, endowing cells with the capacity to withstand an aberrant mitogenic activity, with a profound impact on the genetic history of tumorigenesis, and to adapt to the multiple constraints encountered over the course of tumor development. Cancer Res; 78(1); 30-35. ©2017 AACR.

Journal ArticleDOI
TL;DR: Ex-miR-1246 is suggested as a promising prostate cancer biomarker with diagnostic potential that can predict disease aggressiveness and dysregulation of exosomal miRNAs in aggressive prostate cancer leads to alteration of key signaling pathways associated with metastatic prostate cancer.
Abstract: Because of high heterogeneity, molecular characterization of prostate cancer based on biopsy sampling is often challenging. Hence, a minimally invasive method to determine the molecular imprints of a patient's tumor for risk stratification would be advantageous. In this study, we employ a novel, digital amplification-free quantification method using the nCounter technology (NanoString Technologies) to profile exosomal serum miRNAs (ex-miRNA) from aggressive prostate cancer cases, benign prostatic hyperplasia, and disease-free controls. We identified several dysregulated miRNAs, one of which was the tumor suppressor miR-1246. miR-1246 was downregulated in prostate cancer clinical tissues and cell lines and was selectively released into exosomes. Overexpression of miR-1246 in a prostate cancer cell line significantly inhibited xenograft tumor growth in vivo and increased apoptosis and decreased proliferation, invasiveness, and migration in vitro miR-1246 inhibited N-cadherin and vimentin activities, thereby inhibiting epithelial-mesenchymal transition. Ex-miR-1246 expression correlated with increasing pathologic grade, positive metastasis, and poor prognosis. Our analyses suggest ex-miR-1246 as a promising prostate cancer biomarker with diagnostic potential that can predict disease aggressiveness.Significance: Dysregulation of exosomal miRNAs in aggressive prostate cancer leads to alteration of key signaling pathways associated with metastatic prostate cancer. Cancer Res; 78(7); 1833-44. ©2018 AACR.

Journal ArticleDOI
TL;DR: It is found that targeting the proinflammatory cytokine IL6 enhances tumor-specific Th1 responses and subsequent antitumor effects in tumor-bearing mice, suggesting that IL6 is a rational immunosuppressive target for overcoming the narrow therapeutic window of anti-PD-1/PD-L1 therapy.
Abstract: Recently emerging cancer immunotherapies combine the applications of therapeutics to disrupt the immunosuppressive conditions in tumor-bearing hosts. In this study, we found that targeting the proinflammatory cytokine IL6 enhances tumor-specific Th1 responses and subsequent antitumor effects in tumor-bearing mice. IL6 blockade upregulated expression of the immune checkpoint molecule programmed death-ligand 1 (PD-L1) on melanoma cells. This PD-L1 induction was canceled in IFNγ-deficient mice or CD4+ T cell-depleted mice, suggesting that CD4+ T cell-derived IFNγ is important for PD-L1 induction in tumor-bearing hosts. In some patients with melanoma, however, treatment with the anti-PD-1 antibody nivolumab increased systemic levels of IL6, which was associated with poor clinical responses. This PD-L1 blockade-evoked induction of IL6 was reproducible in melanoma-bearing mice. We found that PD-1/PD-L1 blockade prompted PD-1+ macrophages to produce IL6 in the tumor microenvironment. Depletion of macrophages in melanoma-bearing mice reduced the levels of IL6 during PD-L1 blockade, suggesting macrophages are responsible for the IL6-mediated defective CD4+ Th1 response. Combined blockade of the mutually regulated immunosuppressive activities of IL6 and PD-1/PD-L1 signals enhanced expression of T cell-attracting chemokines and promoted infiltration of IFNγ-producing CD4+ T cells in tumor tissues, exerting a synergistic antitumor effect, whereas PD-L1 blockade alone did not promote Th1 response. Collectively, these findings suggest that IL6 is a rational immunosuppressive target for overcoming the narrow therapeutic window of anti-PD-1/PD-L1 therapy.Significance: These findings advance our understanding of IL6-PD1/PD-L1 cross-talk in the tumor microenvironment and provide clues for targeted interventional therapy that may prove more effective against cancer. Cancer Res; 78(17); 5011-22. ©2018 AACR.

Journal ArticleDOI
TL;DR: Mechanisms of how loss of the lncRNA XIST promotes brain metastasis in breast cancer are described and fludarabine is identified as a potential therapeutic agent that specifically eliminates XISTlow tumor cells in the brain.
Abstract: Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XISThigh cells in our xenograft models. Moreover, knockout of XIST in mice mammary glands accelerated primary tumor growth as well as metastases in the brain. Decreased expression of XIST stimulated epithelial-mesenchymal transition and activated c-Met via MSN-mediated protein stabilization, which resulted in the promotion of stemness in the tumor cells. Loss of XIST also augmented secretion of exosomal miRNA-503, which triggered M1-M2 polarization of microglia. This M1-M2 conversion upregulated immune suppressive cytokines in microglia that suppressed T-cell proliferation. Furthermore, we screened an FDA-approved drug library and identified fludarabine as a synthetic lethal drug for XISTlow breast tumor cells and found that fludarabine blocked brain metastasis in our animal model. Our results indicate that XIST plays a critical role in brain metastasis in breast cancer by affecting both tumor cells and the tumor microenvironment and that the XIST-mediated pathway may serve as an effective target for treating brain metastasis.Significance: These findings describe mechanisms of how loss of the lncRNA XIST promotes brain metastasis in breast cancer and identify fludarabine as a potential therapeutic agent that specifically eliminates XISTlow tumor cells in the brain. Cancer Res; 78(15); 4316-30. ©2018 AACR.

Journal ArticleDOI
TL;DR: Findings reveal high expression of the circular RNA circPRKCI drives lung adenocarcinoma tumorigenesis and may serve as a potential therapeutic target in patients with lungAdenocARCinoma.
Abstract: Somatic copy number variations (CNV) may drive cancer progression through both coding and noncoding transcripts. However, noncoding transcripts resulting from CNV are largely unknown, especially for circular RNAs. By integrating bioinformatics analyses of alerted circRNAs and focal CNV in lung adenocarcinoma, we identify a proto-oncogenic circular RNA (circPRKCI) from the 3q26.2 amplicon, one of the most frequent genomic aberrations in multiple cancers. circPRKCI was overexpressed in lung adenocarcinoma tissues, in part due to amplification of the 3q26.2 locus, and promoted proliferation and tumorigenesis of lung adenocarcinoma. circPRKCI functioned as a sponge for both miR-545 and miR-589 and abrogated their suppression of the protumorigenic transcription factor E2F7 Intratumor injection of cholesterol-conjugated siRNA specifically targeting circPRKCI inhibited tumor growth in a patient-derived lung adenocarcinoma xenograft model. In summary, circPRKCI is crucial for tumorigenesis and may serve as a potential therapeutic target in patients with lung adenocarcinoma.Significance: These findings reveal high expression of the circular RNA circPRKCI drives lung adenocarcinoma tumorigenesis. Cancer Res; 78(11); 2839-51. ©2018 AACR.

Journal ArticleDOI
TL;DR: A comprehensive screen for immune-related genes regulated by TAZ and its paralog YAP using NanoString gene expression profiling identifies the immune checkpoint molecule PD-L1 as a target of Hippo signaling and provides evidence implicating TAZ in human cancer immune evasion.
Abstract: The Hippo pathway component WW domain-containing transcription regulator 1 (TAZ) is a transcriptional coactivator and an oncogene in breast and lung cancer. Transcriptional targets of TAZ that modulate immune cell function in the tumor microenvironment are poorly understood. Here, we perform a comprehensive screen for immune-related genes regulated by TAZ and its paralog YAP using NanoString gene expression profiling. We identify the immune checkpoint molecule PD-L1 as a target of Hippo signaling. The upstream kinases of the Hippo pathway, mammalian STE20-like kinase 1 and 2 (MST1/2), and large tumor suppressor 1 and 2 (LATS1/2), suppress PD-L1 expression while TAZ and YAP enhance PD-L1 levels in breast and lung cancer cell lines. PD-L1 expression in cancer cell lines is determined by TAZ activity and TAZ/YAP/TEAD increase PD-L1 promoter activity. Critically, TAZ-induced PD-L1 upregulation in human cancer cells is sufficient to inhibit T-cell function. The relationship between TAZ and PD-L1 is not conserved in multiple mouse cell lines, likely due to differences between the human and mouse PD-L1 promoters. To explore the extent of divergence in TAZ immune-related targets between human and mouse cells, we performed a second NanoString screen using mouse cell lines. We show that many targets of TAZ may be differentially regulated between these species. These findings highlight the role of Hippo signaling in modifying human/murine physiologic/pathologic immune responses and provide evidence implicating TAZ in human cancer immune evasion.Significance: Human-specific activation of PD-L1 by a novel Hippo signaling pathway in cancer immune evasion may have a significant impact on research in immunotherapy. Cancer Res; 78(6); 1457-70. ©2018 AACR.

Journal ArticleDOI
TL;DR: By using drug dose modulation or treatment vacations, adaptive therapy strategies control the emergence of tumor drug resistance by spatially suppressing less fit resistant populations in favor of treatment sensitive ones.
Abstract: Treatment of advanced cancers has benefited from new agents that supplement or bypass conventional therapies. However, even effective therapies fail as cancer cells deploy a wide range of resistance strategies. We propose that evolutionary dynamics ultimately determine survival and proliferation of resistant cells. Therefore, evolutionary strategies should be used with conventional therapies to delay or prevent resistance. Using an agent-based framework to model spatial competition among sensitive and resistant populations, we applied antiproliferative drug treatments to varying ratios of sensitive and resistant cells. We compared a continuous maximum-tolerated dose schedule with an adaptive schedule aimed at tumor control via competition between sensitive and resistant cells. Continuous treatment cured mostly sensitive tumors, but with any resistant cells, recurrence was inevitable. We identified two adaptive strategies that control heterogeneous tumors: dose modulation controls most tumors with less drug, while a more vacation-oriented schedule can control more invasive tumors. These findings offer potential modifications to treatment regimens that may improve outcomes and reduce resistance and recurrence.Significance: By using drug dose modulation or treatment vacations, adaptive therapy strategies control the emergence of tumor drug resistance by spatially suppressing less fit resistant populations in favor of treatment sensitive ones. Cancer Res; 78(8); 2127-39. ©2018 AACR.

Journal ArticleDOI
TL;DR: It is shown that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets.
Abstract: Metformin is a broadly prescribed drug for type 2 diabetes that exerts antitumor activity, yet the mechanisms underlying this activity remain unclear. We show here that metformin treatment blocks the suppressive function of myeloid-derived suppressor cells (MDSC) in patients with ovarian cancer by downregulating the expression and ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets. Metformin triggered activation of AMP-activated protein kinase α and subsequently suppressed hypoxia-inducible factor α, which was critical for induction of CD39/CD73 expression in MDSC. Furthermore, metformin treatment correlated with longer overall survival in diabetic patients with ovarian cancer, which was accompanied by a metformin-induced reduction in the frequency of circulating CD39 + CD73 + MDSC and a concomitant increase in the antitumor activities of circulating CD8 + T cells. Our results highlight a direct effect of metformin on MDSC and suggest that metformin may yield clinical benefit through improvement of antitumor T-cell immunity by dampening CD39/CD73-dependent MDSC immunosuppression in ovarian cancer patients. Significance: The antitumor activity of an antidiabetes drug is attributable to reduced immunosuppressive activity of myeloid-derived tumor suppressor cells. Cancer Res; 78(7); 1779–91. ©2018 AACR .

Journal ArticleDOI
TL;DR: The potential of tumor-educated blood platelets (TEP) as a noninvasive biomarker trove for RNA biomarker panels is discovered, and TEP RNA may complement currently used biosources and biomolecules employed for liquid biopsy diagnosis, potentially enhancing the detection of cancer in an early stage and facilitating non invasive disease monitoring.
Abstract: Liquid biopsies represent a potential revolution in cancer diagnostics as a noninvasive method for detecting and monitoring diseases, complementary to or even replacing current tissue biopsy approaches. Several blood-based biosources and biomolecules, such as cell-free DNA and RNA, proteins, circulating tumor cells, and extracellular vesicles, have been explored for molecular test development. We recently discovered the potential of tumor-educated blood platelets (TEP) as a noninvasive biomarker trove for RNA biomarker panels. TEPs are involved in the progression and spread of several solid tumors, and spliced TEP RNA surrogate signatures can provide specific information on the presence, location, and molecular characteristics of cancers. So far, TEP samples from patients with different tumor types, including lung, brain, and breast cancers, have been tested, and it has been shown that TEPs from patients with cancer are distinct from those with inflammatory and other noncancerous diseases. It remains to be investigated how platelets are "educated," which mechanisms cause intraplatelet RNA splicing, and whether the relative contribution of specific platelet subpopulations changes in patients with cancer. Ultimately, TEP RNA may complement currently used biosources and biomolecules employed for liquid biopsy diagnosis, potentially enhancing the detection of cancer in an early stage and facilitating noninvasive disease monitoring. Cancer Res; 78(13); 3407-12. ©2018 AACR.

Journal ArticleDOI
TL;DR: The results suggest that HP 13C pyruvate-to-lactate conversion may be a viable metabolic biomarker for assessing tumor response, and enables metabolic imaging in the brain and can be a quantitative biomarkers for active tumors.
Abstract: Hyperpolarized (HP) MRI using [1-13C] pyruvate is a novel method that can characterize energy metabolism in the human brain and brain tumors. Here, we present the first dynamically acquired human brain HP 13C metabolic spectra and spatial metabolite maps in cases of both untreated and recurrent tumors. In vivo production of HP lactate from HP pyruvate by tumors was indicative of altered cancer metabolism, whereas production of HP lactate in the entire brain was likely due to baseline metabolism. We correlated our results with standard clinical brain MRI, MRI DCE perfusion, and in one case FDG PET/CT. Our results suggest that HP 13C pyruvate-to-lactate conversion may be a viable metabolic biomarker for assessing tumor response.Significance: Hyperpolarized pyruvate MRI enables metabolic imaging in the brain and can be a quantitative biomarker for active tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3755/F1.large.jpg Cancer Res; 78(14); 3755-60. ©2018 AACR.

Journal ArticleDOI
TL;DR: The regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents are summarized and an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors.
Abstract: Rac and Cdc42 are small GTPases that have been linked to multiple human cancers and are implicated in epithelial to mesenchymal transition, cell-cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic transformation. With the exception of the P29S driver mutation in melanoma, Rac and Cdc42 are not generally mutated in cancer, but are overexpressed (gene amplification and mRNA upregulation) or hyperactivated. Rac and Cdc42 are hyperactivated via signaling through oncogenic cell surface receptors, such as growth factor receptors, which converge on the guanine nucleotide exchange factors that regulate their GDP/GTP exchange. Hence, targeting Rac and Cdc42 represents a promising strategy for precise cancer therapy, as well as for inhibition of bypass signaling that promotes resistance to cell surface receptor-targeted therapies. Therefore, an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors. In this review, we focus on the role of Rac and Cdc42 in cancer and summarize the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents. Cancer Res; 78(12); 3101-11. ©2018 AACR.

Journal ArticleDOI
TL;DR: In liver cancer, CTC examination may represent an important "liquid biopsy" tool to detect both early disease and recurrent or metastatic disease, providing cues for early intervention or adjuvant therapy.
Abstract: To clarify the significance of circulating tumor cells (CTC) undergoing epithelial-mesenchymal transition (EMT) in patients with hepatocellular carcinoma (HCC), we used an advanced CanPatrol CTC-enrichment technique and in situ hybridization to enrich and classify CTC from blood samples. One hundred and one of 112 (90.18%) patients with HCC were CTC positive, even with early-stage disease. CTCs were also detected in 2 of 12 patients with hepatitis B virus (HBV), both of whom had small HCC tumors detected within 5 months. CTC count ≥16 and mesenchymal-CTC (M-CTC) percentage ≥2% prior to resection were significantly associated with early recurrence, multi-intrahepatic recurrence, and lung metastasis. Postoperative CTC monitoring in 10 patients found that most had an increased CTC count and M-CTC percentage before clinically detectable recurrence nodules appeared. Analysis of HCC with high CTC count and high M-CTC percentage identified 67 differentially expressed cancer-related genes involved in cancer-related biological pathways (e.g., cell adhesion and migration, tumor angiogenesis, and apoptosis). One of the identified genes, BCAT1, was significantly upregulated, and knockdown in Hepg2, Hep3B, and Huh7 cells reduced cell proliferation, migration, and invasion while promoting apoptosis. A concomitant increase in epithelial marker expression (EpCAM and E-cadherin) and reduced mesenchymal marker expression (vimentin and Twist) suggest that BCAT1 may trigger the EMT process. Overall, CTCs were highly correlated with HCC characteristics, representing a novel marker for early diagnosis and a prognostic factor for early recurrence. BCAT1 overexpression may induce CTC release by triggering EMT and may be an important biomarker of HCC metastasis.Significance: In liver cancer, CTC examination may represent an important "liquid biopsy" tool to detect both early disease and recurrent or metastatic disease, providing cues for early intervention or adjuvant therapy. Cancer Res; 78(16); 4731-44. ©2018 AACR.

Journal ArticleDOI
TL;DR: Results of these preclinical studies demonstrated that targeting PTMs of PD-L1 yields promising antitumor effects and that clinical translation of these therapeutic strategies is warranted.
Abstract: Posttranslational modifications (PTM) of PD-L1 have emerged as important regulatory mechanisms that modulate immunosuppression in patients with cancer. In exposure to inflammatory cytokines, cancer cells and antigen-presenting cells, such as macrophages and dendritic cells, express PD-L1 to inhibit the activity of effector T cells through PD-1 engagement. Recent studies suggested that glycosylation, phosphorylation, ubiquitination, sumoylation, and acetylation play important roles in the regulation of PD-L1 protein stability and translocation and protein-protein interactions. Aberrant alterations of PTMs directly influence PD-L1-mediated immune resistance. On the basis of the newly identified regulatory signaling pathways of PD-L1 PTMs, researchers have investigated the cancer therapeutic potential of natural food compounds, small-molecule inhibitors, and mAbs by targeting PD-L1 PTMs. Results of these preclinical studies demonstrated that targeting PTMs of PD-L1 yields promising antitumor effects and that clinical translation of these therapeutic strategies is warranted. Cancer Res; 78(22); 6349-53. ©2018 AACR.

Journal ArticleDOI
TL;DR: These findings demonstrate the interaction of esophageal cancer and cancer-associated fibroblasts through IL-6 signaling, providing rationale for a novel therapeutic approach to target these cancers.
Abstract: The tumor microenvironment (TME) plays a major role in the pathogenesis of multiple cancer types, including upper-gastrointestinal (GI) cancers that currently lack effective therapeutic options. Cancer-associated fibroblasts (CAF) are an essential component of the TME, contributing to tumorigenesis by secreting growth factors, modifying the extracellular matrix, supporting angiogenesis, and suppressing anti-tumor immune responses. Through an unbiased approach, we have established that IL-6 mediates crosstalk between tumor cells and CAF not only by supporting tumor cell growth, but also by promoting fibroblast activation. As a result, IL-6 receptor (IL-6Rα) and downstream effectors offer opportunities for targeted therapy in upper-GI cancers. IL-6 loss suppressed tumorigenesis in physiologically relevant 3D organotypic and 3D tumoroid models and murine models of esophageal cancer. Tocilizumab, an anti-IL-6Rα antibody, suppressed tumor growth in vivo in part via inhibition of STAT3 and MEK/ERK signaling. Analysis of a pan-cancer TCGA dataset revealed an inverse correlation between IL-6 and IL-6Rα overexpression and patient survival. Therefore, we expanded evaluation of tocilizumab to head-and-neck squamous cell carcinoma patient-derived xenografts and gastric adenocarcinoma xenografts, demonstrating suppression of tumor growth and altered STAT3 and ERK1/2 gene signatures. We used small molecule inhibitors of STAT3 and MEK1/2 signaling to suppress tumorigenesis in the 3D organotypic model of esophageal cancer. We demonstrate that IL-6 is a major contributor to the dynamic crosstalk between tumor cells and CAF in the TME. Our findings provide a translational rationale for inhibition of IL-6Rα and downstream signaling pathways as a novel targeted therapy in oral-upper-GI cancers.

Journal ArticleDOI
TL;DR: It is reported that intratumoral injections with a sialic acid mimetic Ac53FaxNeu5Ac block tumor sIALic acid expression in vivo and suppress tumor growth in multiple tumor models and provides proof of concept that sialing acid blockade creates an immune-permissive tumor microenvironment for CD8+ T-cell-mediated tumor immunity.
Abstract: Sialic acid sugars on the surface of cancer cells have emerged as potent immune modulators that contribute to the immunosuppressive microenvironment and tumor immune evasion. However, the mechanisms by which these sugars modulate antitumor immunity as well as therapeutic strategies directed against them are limited. Here we report that intratumoral injections with a sialic acid mimetic Ac53FaxNeu5Ac block tumor sialic acid expression in vivo and suppress tumor growth in multiple tumor models. Sialic acid blockade had a major impact on the immune cell composition of the tumor, enhancing tumor-infiltrating natural killer cell and CD8+ T-cell numbers while reducing regulatory T-cell and myeloid regulatory cell numbers. Sialic acid blockade enhanced cytotoxic CD8+ T-cell-mediated killing of tumor cells in part by facilitating antigen-specific T-cell-tumor cell clustering. Sialic acid blockade also synergized with adoptive transfer of tumor-specific CD8+ T cells in vivo and enhanced CpG immune adjuvant therapy by increasing dendritic cell activation and subsequent CD8+ T-cell responses. Collectively, these data emphasize the crucial role of sialic acids in tumor immune evasion and provide proof of concept that sialic acid blockade creates an immune-permissive tumor microenvironment for CD8+ T-cell-mediated tumor immunity, either as single treatment or in combination with other immune-based intervention strategies.Significance: Sialic acid sugars function as important modulators of the immunosuppressive tumor microenvironment that limit potent antitumor immunity.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3574/F1.large.jpg Cancer Res; 78(13); 3574-88. ©2018 AACR.

Journal ArticleDOI
TL;DR: Identification of comutations in specific DDR pathways as predictors of superior survival outcomes in response to immune checkpoint blockade provide a clinically convenient approach for estimation of tumor mutational burden and delivery of ICB therapy.
Abstract: Biomarkers such as programmed death receptor 1 ligand (PD-L1) expression, tumor mutational burden (TMB), and high microsatellite instability are potentially applicable to predict the efficacy of immune checkpoint blockade (ICB). However, several challenges such as defining the cut-off value, test platform uniformity, and low frequencies limit their broad clinical application. Here we identify comutations in the DNA damage response (DDR) pathways of homologous recombination repair and mismatch repair (HRR-MMR) or HRR and base excision repair (HRR-BER; defined as co-mut+) that are associated with increased TMB and neoantigen load and increased levels of immune gene expression signatures. In four public clinical cohorts, co-mut+ patients presented a higher objective response rate and a longer progression-free survival or overall survival than co-mut- patients. Overall, identification of DDR comutations in HRR-MMR or HRR-BER as predictors of response to ICB provides a potentially convenient approach for future clinical practice.Significance: Identification of comutations in specific DDR pathways as predictors of superior survival outcomes in response to immune checkpoint blockade provide a clinically convenient approach for estimation of tumor mutational burden and delivery of ICB therapy. Cancer Res; 78(22); 6486-96. ©2018 AACR.

Journal ArticleDOI
TL;DR: Insight is provided on existing preclinical evidence on the potential mechanisms leading to CTC cluster formation and dissemination and on processes that may offer survival advantage and on future directions to delineate the role of CTC clusters in metastatic cascade.
Abstract: Circulating tumor cell (CTC) clusters may represent one of the key mechanisms initiating the metastasis process. However, the series of pathophysiologic events by which CTC clusters originate, enter the circulation, and reach the distant sites remain to be identified. The cellular and molecular mechanisms that provide survival advantage for CTC clusters during the transit in the blood stream are also still largely unknown. Understanding the biology of CTC clusters is critical to assess this unified scheme employed by cancer and to device strategies to overcome key pathways responsible for their improved metastatic potential. CTC clusters remain an underdeveloped area of research begging the attention of multidisciplinary cancer research teams. Here, we provide insight on existing preclinical evidence on the potential mechanisms leading to CTC cluster formation and dissemination and on processes that may offer survival advantage. We also offer our perspective on future directions to delineate the role of CTC clusters in metastatic cascade and discuss their clinical significance. Cancer Res; 78(4); 845-52. ©2018 AACR.

Journal ArticleDOI
TL;DR: These findings provide a framework for defining subpopulations of endothelial cells and tumor-associated fibroblasts and their rapid changes in gene expression following antiangiogenic treatment and reveal the roles of VEGF and Dll4-Notch in specifying tumor endothelial phenotype.
Abstract: Angiogenesis involves dynamic interactions between specialized endothelial tip and stalk cells that are believed to be regulated in part by VEGF and Dll4-Notch signaling. However, our understanding of this process is hampered by limited knowledge of the heterogeneity of endothelial cells and the role of different signaling pathways in specifying endothelial phenotypes. Here, we characterized by single-cell transcriptomics the heterogeneity of mouse endothelial cells and other stromal cells during active angiogenesis in xenograft tumors as well as from adult normal heart, following pharmacologic inhibition of VEGF and Dll4-Notch signaling. We classified tumor endothelial cells into three subpopulations that appeared to correspond with tip-like, transition, and stalk-like cells. Previously identified markers for tip and stalk cells were confirmed and several novel ones discovered. Blockade of VEGF rapidly inhibited cell-cycle genes and strongly reduced the proportion of endothelial tip cells in tumors. In contrast, blockade of Dll4 promoted endothelial proliferation as well as tip cell markers; blockade of both pathways inhibited endothelial proliferation but preserved some tip cells. We also phenotypically classified other tumor stromal cells and found that tumor-associated fibroblasts responded to antiangiogenic drug treatments by upregulating hypoxia-associated genes and producing secreted factors involved in angiogenesis. Overall, our findings better define the heterogeneity of tumor endothelial and other stromal cells and reveal the roles of VEGF and Dll4-Notch in specifying tumor endothelial phenotype, highlighting the response of stromal cells to antiangiogenic therapies.Significance: These findings provide a framework for defining subpopulations of endothelial cells and tumor-associated fibroblasts and their rapid changes in gene expression following antiangiogenic treatment. Cancer Res; 78(9); 2370-82. ©2018 AACR.

Journal ArticleDOI
TL;DR: It is reported that genetic or pharmacological targeting of the oncogenic M UC1 subunit MUC1-C is sufficient to suppress PD-L1 expression in TNBC cells, and this finding offers a rationale to target MUC-C as a novel immunotherapeutic approach for TNBC treatment.
Abstract: The immune checkpoint ligand PD-L1 and the transmembrane mucin MUC1 are upregulated in triple-negative breast cancer (TNBC), where they contribute to its aggressive pathogenesis. Here, we report that genetic or pharmacological targeting of the oncogenic MUC1 subunit MUC1-C is sufficient to suppress PD-L1 expression in TNBC cells. Mechanistic investigations showed that MUC1-C acted to elevate PD-L1 transcription by recruitment of MYC and NF-κB p65 to the PD-L1 promoter. In an immunocompetent model of TNBC in which Eo771/MUC1-C cells were engrafted into MUC1 transgenic mice, we showed that targeting MUC1-C associated with PD-L1 suppression, increases in tumor-infiltrating CD8+ T cells and tumor cell killing. MUC1 expression in TNBCs also correlated inversely with CD8, CD69, and GZMB, and downregulation of these markers associated with decreased survival. Taken together, our findings show how MUC1 contributes to immune escape in TNBC, and they offer a rationale to target MUC1-C as a novel immunotherapeutic approach for TNBC treatment.Significance: These findings show how upregulation of the transmembrane mucin MUC1 contributes to immune escape in an aggressive form of breast cancer, with potential implications for a novel immunotherapeutic approach. Cancer Res; 78(1); 205-15. ©2017 AACR.