scispace - formally typeset
Search or ask a question

Showing papers in "Gene Therapy in 2005"


Journal ArticleDOI
TL;DR: It is shown that the noncovalent complexation of synthetic siRNAs with low molecular weight polyethylenimine (PEI) efficiently stabilizes si RNAs and delivers siRNas into cells where they display full bioactivity at completely nontoxic concentrations.
Abstract: RNA interference (RNAi) represents a powerful, naturally occurring biological strategy for inhibition of gene expression. It is mediated through small interfering RNAs (siRNAs), which trigger specific mRNA degradation. In mammalian systems, however, the application of siRNAs is severely limited by the instability and poor delivery of unmodified siRNA molecules into the cells in vivo. In this study, we show that the noncovalent complexation of synthetic siRNAs with low molecular weight polyethylenimine (PEI) efficiently stabilizes siRNAs and delivers siRNAs into cells where they display full bioactivity at completely nontoxic concentrations. More importantly, in a subcutaneous mouse tumor model, the systemic (intraperitoneal, i.p.) administration of complexed, but not of naked siRNAs, leads to the delivery of the intact siRNAs into the tumors. The i.p. injection of PEI-complexed, but not of naked siRNAs targeting the c-erbB2/neu (HER-2) receptor results in a marked reduction of tumor growth through siRNA-mediated HER-2 downregulation. Hence, we establish a novel and simple system for the systemic in vivo application of siRNAs through PEI complexation as a powerful tool for future therapeutic use.

743 citations


Journal ArticleDOI
TL;DR: The occurrence of adverse events caused by insertional mutagenesis in three patients in a gene therapy trial for X-linked SCID emphasizes the potential for problems in translating this approach to the clinic.
Abstract: Replication defective vectors derived from simple retroviruses or the more complex genomes of lentiviruses continue to offer the advantages of long-term expression, cell and tissue specific tropism, and large packaging capacity for the delivery of therapeutic genes. The occurrence of adverse events caused by insertional mutagenesis in three patients in a gene therapy trial for X-linked SCID emphasizes the potential for problems in translating this approach to the clinic. Several genome-wide studies of retroviral integration are now providing novel insights into the integration site preferences of different vector classes. We review recent developments in vector design, integration, biosafety, and production.

340 citations


Journal ArticleDOI
TL;DR: Nonviral vector trafficking pathways are reviewed, which will be considered here as the steps from cell binding to nuclear delivery, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles.
Abstract: Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector-cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.

333 citations


Journal ArticleDOI
TL;DR: While much work remains to optimize delivery and maintain specificity, the therapeutic advantages of siRNAs for treatment of viral infection, dominant disorders, cancer, and neurological disorders show great promise.
Abstract: RNA interference (RNAi) is now an umbrella term referring to post-transcriptional gene silencing mediated by either degradation or translation arrest of target RNA. This process is initiated by double-stranded RNA with sequence homology driving specificity. The discovery that 21-23 nucleotide RNA duplexes (small-interfering RNAs, siRNAs) mediate RNAi in mammalian cells opened the door to the therapeutic use of siRNAs. While much work remains to optimize delivery and maintain specificity, the therapeutic advantages of siRNAs for treatment of viral infection, dominant disorders, cancer, and neurological disorders show great promise.

299 citations


Journal ArticleDOI
TL;DR: Recently developed strategies to avoid/reduce helper contamination were reviewed and, among them, Cre-loxP system is mostly used, although contamination levels still are 0.1–1% too high to be used in clinical trials.
Abstract: Last-generation adenovirus vectors, also called helper-dependent or gutless adenovirus, are very attractive for gene therapy because the associated in vivo immune response is highly reduced compared to first- and second-generation adenovirus vectors, while maintaining high transduction efficiency and tropism. Nowadays, gutless adenovirus is administered in different organs, such as the liver, muscle or the central nervous system achieving high-level and long-term transgene expression in rodents and primates. However, as devoid of all viral coding regions, gutless vectors require viral proteins supplied in trans by a helper virus. To remove contamination by a helper virus from the final preparation, different systems based on the excision of the helper-packaging signal have been generated. Among them, Cre-loxP system is mostly used, although contamination levels still are 0.1-1% too high to be used in clinical trials. Recently developed strategies to avoid/reduce helper contamination were reviewed.

295 citations


Journal ArticleDOI
TL;DR: Recent studies designed to elucidate the mechanisms of plasmid nuclear import in nondividing cells are summarized and approaches to either exploit or circumvent these processes to increase the efficiency of gene transfer and therapy are discussed.
Abstract: Nonviral gene delivery is limited to a large extent by multiple extracellular and intracellular barriers. One of the major barriers, especially in nondividing cells, is the nuclear envelope. Once in the cytoplasm, plasmids must make their way into the nucleus in order to be expressed. Numerous studies have demonstrated that transfections work best in dividing populations of cells in which the nuclear envelope disassembles during mitosis, thus largely eliminating the barrier. However, since many of the cells that are targets for gene therapy do not actively undergo cell division during the gene transfer process, the mechanisms of nuclear transport of plasmids in nondividing cells are of critical importance. In this review, we summarize recent studies designed to elucidate the mechanisms of plasmid nuclear import in nondividing cells and discuss approaches to either exploit or circumvent these processes to increase the efficiency of gene transfer and therapy.

289 citations


Journal ArticleDOI
TL;DR: The protein toxins discussed in the present article are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.
Abstract: A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol The toxins fall into two main groups when it comes to cytosolic entry Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell

261 citations


Journal ArticleDOI
TL;DR: The current understanding of events that control rAAV transduction following receptor binding and leading to nuclear uptake is summarized, finding these stages are broadly classified as intracellular trafficking and have been found to be a major rate-limiting step in AAV transduction for many cell types.
Abstract: Adeno-associated virus (AAV) has attracted considerable interest as a gene therapy vector over the past decade. In all, 85% of the current 2052 PubMed references on AAV (as of December 2004) have been published in the last 10 years. As researchers have moved forward with using this vector system for gene delivery, an increased appreciation for the complexities of AAV biology has emerged. The biology of recombinant AAV (rAAV) transduction has demonstrated considerable diversity in different cell types and target tissues. This review will summarize the current understanding of events that control rAAV transduction following receptor binding and leading to nuclear uptake. These stages are broadly classified as intracellular trafficking and have been found to be a major rate-limiting step in rAAV transduction for many cell types. Advances in understanding this area of rAAV biology will help to improve the efficacy of this vector system for the treatment of inherited and acquired diseases.

258 citations


Journal ArticleDOI
TL;DR: The results indicate that the use of siRNAs targeting NMDA-R2B receptor subunit protein (NR2B) receptors, a subunit of NMDA receptor, for the modulation of pain abolished formalin-induced pain behaviors in rat model, and prove the feasibility of i.t. si RNAs in the investigation of functional gene expression in the context of whole animal behavior for the management of chronic pain.
Abstract: N-methyl-D-aspartate (NMDA) receptor activation, at the level of the spinal cord, has been shown to play an important role in the facilitation of nociception in several animal models. However, the use of NMDA antagonists as analgesics is limited by serious side effects due to nonselective effects among the NMDA receptor subtypes. Recent discoveries revealed that the transfection of small interfering RNAs (siRNAs) into animal cells resulted in the potent, long-lasting, post-transcriptional silencing of specific genes. Thus, we investigated the effect of intrathecal (i.t.) injection of siRNAs targeting NMDA-R2B receptor subunit protein (NR2B) receptors, a subunit of NMDA receptor, for the modulation of pain. The results indicate that the use of siRNA targeting the NR2B subunit not only decreased the expression of NR2B mRNA and its associated protein, as demonstrated by real-time PCR and Western blotting, but also abolished formalin-induced pain behaviors in rat model. The peak effect occurred on day 3 for mRNA and day 7 for its protein, following i.t. injection of 5 μg of siRNA-NR2B. These data prove the feasibility of i.t. siRNAs in the investigation of functional gene expression in the context of whole animal behavior for the management of chronic pain.

235 citations


Journal ArticleDOI
TL;DR: The data indicate that allogeneic chondrocytes, transfected by a nonviral method and cultured in alginate, are able to secrete biologically relevant amounts of IGF-I over a prolonged period of time in vitro and suggest that therapeutic growth factor gene delivery using encapsulated and transplanted genetically modified chondROcytes may be applicable to sites of focal articular cartilage damage.
Abstract: Traumatic articular cartilage lesions have a limited capacity to heal. We tested the hypothesis that overexpression of a human insulin-like growth factor I (IGF-I) cDNA by transplanted articular chondrocytes enhances the repair of full-thickness (osteochondral) cartilage defects in vivo. Lapine articular chondrocytes were transfected with expression plasmid vectors containing the cDNA for the Escherichia coli lacZ gene or the human IGF-I gene and were encapsulated in alginate. The expression patterns of the transgenes in these implants were monitored in vitro for 36 days. Transfected allogeneic chondrocytes in alginate were transplanted into osteochondral defects in the trochlear groove of rabbits. At three and 14 weeks, the quality of articular cartilage repair was evaluated qualitatively and quantitatively. In vitro, IGF-I secretion by implants constructed from IGF-I-transfected chondrocytes and alginate was 123.2±22.3 ng/107 cells/24 h at day 4 post transfection and remained elevated at day 36, the longest time point evaluated. In vivo, transplantation of IGF-I implants improved articular cartilage repair and accelerated the formation of the subchondral bone at both time points compared to lacZ implants. The data indicate that allogeneic chondrocytes, transfected by a nonviral method and cultured in alginate, are able to secrete biologically relevant amounts of IGF-I over a prolonged period of time in vitro. The data further demonstrate that implantation of these composites into deep articular cartilage defects is sufficient to augment cartilage defect repair in vivo. These results suggest that therapeutic growth factor gene delivery using encapsulated and transplanted genetically modified chondrocytes may be applicable to sites of focal articular cartilage damage.

218 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the scaffold delivery system encapsulating PEI-condensed DNA encoding for BMP-4 was capable of enhancing bone formation and may find applications in other tissue types.
Abstract: Gene therapy approaches to bone tissue engineering have been widely explored. While localized delivery of plasmid DNA encoding for osteogenic factors is attractive for promoting bone regeneration, the low transfection efficiency inherent with plasmid delivery may limit this approach. We hypothesized that this limitation could be overcome by condensing plasmid DNA with nonviral vectors such as poly(ethylenimine) (PEI), and delivering the plasmid DNA in a sustained and localized manner from poly(lactic-co-glycolic acid) (PLGA) scaffolds. To address this possibility, scaffolds delivering plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4) were implanted into a cranial critical-sized defect for time periods up to 15 weeks. The control conditions included no scaffold (defect left empty), blank scaffolds (no delivered DNA), and scaffolds encapsulating plasmid DNA (non-condensed). Histological and microcomputed tomography analysis of the defect sites over time demonstrated that bone regeneration was significant at the defect edges and within the defect site when scaffolds encapsulating condensed DNA were placed in the defect. In contrast, bone formation was mainly confined to the defect edges within scaffolds encapsulating plasmid DNA, and when blank scaffolds were used to fill the defect. Histomorphometric analysis revealed a significant increase in total bone formation (at least 4.5-fold) within scaffolds incorporating condensed DNA, relative to blank scaffolds and scaffolds incorporating uncondensed DNA at each time point. In addition, there was a significant increase both in osteoid and mineralized tissue density within scaffolds incorporating condensed DNA, when compared with blank scaffolds and scaffolds incorporating uncondensed DNA, suggesting that delivery of condensed DNA led to more complete mineralized tissue regeneration within the defect area. This study demonstrated that the scaffold delivery system encapsulating PEI-condensed DNA encoding for BMP-4 was capable of enhancing bone formation and may find applications in other tissue types.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the performance of E1/E3-deleted adenoviral vectors and three polyethylenimine-based vector formulations, as well as the liposomal transfection reagent Lipofectamine and naked DNA; the cargo is a plasmid encoding the β-galactosidase gene under a CMV promoter.
Abstract: An objective of designing molecular vehicles exhibiting virus-like transgene delivery capabilities but with low toxicity and immunogenicity continues to drive synthetic vector development. As no single step within the gene delivery pathway represents the critical limiting barrier for all vector types under all circumstances, improvements in synthetic vehicle design may be aided by quantitative analysis of the contributions of each step to the overall delivery process. To our knowledge, however, synthetic and viral gene delivery methods have not yet been explicitly compared in terms of these delivery pathway steps in a quantitative manner. As a first address of this challenge, we compare here quantitative parameters characterizing intracellular gene delivery steps for an E1/E3-deleted adenoviral vector and three polyethylenimine (PEI)-based vector formulations, as well as the liposomal transfection reagent Lipofectamine and naked DNA; the cargo is a plasmid encoding the β-galactosidase gene under a CMV promoter, and the cell host is the C3A human hepatocellular carcinoma line. The parameters were determined by applying a previously validated mathematical model to transient time-course measurements of plasmid uptake and trafficking (from whole-cell and isolated nuclei lysates, by real-time quantitative PCR), and gene expression levels, enabling discovery of those for which the adenoviral vector manifested superiority. Parameter-sensitivity analysis permitted identification of processes most critically rate-limiting for each vector. We find that the adenoviral vector advantage in delivery appears to reside partially in its import to the nuclear compartment, but that its vast superiority in transgene expression arises predominantly in our situation from postdelivery events: on the basis of per-nuclear plasmid, expression efficiency from adenovirus is superior by orders of magnitude over the PEI vectors. We find that a chemical modification of a PEI-based vector, which substantially improves its performance, appears to do so by enhancing certain trafficking rate parameters, such as binding and uptake, endosomal escape, and binding to nuclear import machinery, but leaves endosomal escape as a barrier over which transgene delivery could be most sensitively increased further for this polymer.

Journal ArticleDOI
R Morenweiser1
TL;DR: Within the purification procedure, a clear trend from classical purification methods like sucrose gradient centrifugation towards more sophisticated techniques like tangential flow filtration and liquid chromatography can be observed.
Abstract: Viral vectors and viral vaccines more and more play an important role in current medical approaches. Gene vectors like adenoviruses, adeno-associated viruses or retroviruses are the vehicles being developed for delivering genetic material to the target cell in gene therapy. Viral vaccines, like attenuated or inactivated rabies virus, influenza virus or hepatitis virus vaccines, are powerful tools to limit the number of serious viral infections and pandemics. Higher safety demands, that is, reduction of side effects, by regulatory authorities like Food and Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products (EMEA), nowadays force developers as well as manufacturers to improve their production and purification processes for viral vectors and vaccines. Like for influenza viral vaccines, manufacturers begin to switch from egg cultivation to mammalian cell culture systems. Also within the purification procedure, a clear trend from classical purification methods like sucrose gradient centrifugation towards more sophisticated techniques like tangential flow filtration and liquid chromatography can be observed.

Journal ArticleDOI
TL;DR: In conclusion, intratumoral administration of ONYX-015 in combination with MAP chemotherapy is well tolerated with no significant toxicity due to oncolytic activity in sarcoma tissue being encountered.
Abstract: ONYX-015 is a provisionally replication competent adenovirus with oncolytic activity in cells with malfunctioning p53 Sarcomas represent a rational target for this approach given the high frequency of p53 mutations (40-75%) and MDM-2 amplification (10-30%) We, therefore, undertook a phase I/II study of ONYX-015, days 1-5 every month administered intratumorally under radiographic guidance, in combination with MAP (mitomycin-C, doxorubicin, cisplatin) chemotherapy in patients with advanced sarcoma Six patients were treated Injected lesions included liver metastases in four patients and chest wall metastases in two patients Sarcoma histologies were gastrointestinal stromal tumors (GIST, two patients), leiomyosarcoma (two patients), liposarcoma (one patient), and malignant peripheral nerve sheath tumor (1 patient) Dose escalation was performed from 10(9) plaque forming units (PFU)/dose (total dose of 5 x 10(9) PFU/cycle) to 10(10) PFU/dose (total dose of 5 x 10(10) PFU/cycle) without dose-limiting toxicity being encountered Immunohistochemistry of the metastatic lesions prior to treatment showed that five out of six patients were positive for p53, while two patients also had mdm-2 overexpression Adenoviral replication was detected in two out of six patient biopsies on day 5 of the first cycle, by in situ hybridization (ISH) Both patients were treated at the highest dose level ONYX-015 viral DNA was detected by quantitative PCR in the plasma of 5/6 patients on day 5 of the first cycle, and up to day 12 (7 days after the last viral dose) in one patient who had extended sampling for viral kinetics performed, suggesting viral replication in sarcoma tissue One patient with p53 mutation and MDM-2 amplification achieved a partial response to treatment that lasted 11 months In conclusion, intratumoral administration of ONYX-015 in combination with MAP chemotherapy is well tolerated with no significant toxicity due to ONYX-015 being encountered Detection of viral DNA in post treatment tumor specimens by ISH and detection of the ONYX-015 genome in the peripheral blood by quantitative PCR, up to 7 days after the last viral dose provide evidence for adenoviral replication There was evidence of antitumor activity in one out of six patients Further investigation of this approach in patients with recurrent sarcomas is warranted

Journal ArticleDOI
TL;DR: The use of a lipophilic amino-acid dendrimer to deliver an anti-vascular endothelial growth factor (VEGF) oligonucleotide (ODN-1) into the eyes of rats and inhibit laser-induced choroidal neovascularization (CNV) is concluded.
Abstract: We have performed a long-term study into the use of a lipophilic amino-acid dendrimer to deliver an anti-vascular endothelial growth factor (VEGF) oligonucleotide (ODN-1) into the eyes of rats and inhibit laser-induced choroidal neovascularization (CNV). In addition, the uptake, distribution and retinal tolerance of the dendrimer plus oligonucleotide conjugates were examined. Analysis of fluorescein angiograms of laser photocoagulated eyes revealed that dendrimer plus ODN-1 significantly inhibited (P 0.05) in mean severity score at 2 months (2.86±0.09), 4 months (2.15±0.17) or 6 months (2.7±0.12) compared to the vehicle-injected controls. Furthermore, we showed that intravitreally injected ODN-1 tagged with 6-fam was absorbed by a wide area of the retina and penetrated all of the retinal cell layers to the retinal pigment epithelium. Ophthalmological examinations indicated that the dendrimers plus ODN-1 conjugates were well tolerated in vivo, which was later confirmed using immunohistochemistry, which showed no observable increase in antigens associated with inflammation. We conclude that the use of such dendrimers may provide a viable mechanism for the delivery of therapeutic oligonucleotides for the treatment of angiogenic eye diseases.

Journal ArticleDOI
TL;DR: Noninvasive delivery of hVEGF165 to rat myocardium by UTMD resulted in significant increases in myocardial capillary and arteriolar density, and hypercellular foci associated with hVE GF165 expression and endothelial cell markers were shown.
Abstract: Myocardial angiogenesis mediated by human vascular endothelial growth factor 165 (hVEGF165) cDNA was promoted in rat myocardium using an in vivo-targeted gene delivery system known as ultrasound-targeted microbubble destruction (UTMD). Microbubbles carrying plasmids encoding hVEGF165, or control solutions were infused intravenously during ultrasonic destruction of the microbubbles within the myocardium. Biochemical and histological assessment of gene expression and angiogenesis were performed 5, 10, and 30 days after UTMD. UTMD-treated myocardium contained hVEGF165 protein and mRNA. The myocardium of UTMD-treated animals showed hypercellular foci associated with hVEGF165 expression and endothelial cell markers. Capillary density in UTMD-treated rats increased 18% at 5 days and 33% at 10 days, returning to control levels at 30 days (P<0.0001). Similarly, arteriolar density increased 22% at 5 days, 86% at 10 days, and 31% at 30 days (P<0.0001). Thus, noninvasive delivery of hVEGF165 to rat myocardium by UTMD resulted in significant increases in myocardial capillary and arteriolar density.

Journal ArticleDOI
TL;DR: The Royal College of Surgeons rat is a well-characterized model of autosomal recessive retinitis pigmentosa due to a defect in the retinal pigment epithelium that demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the Treatment of such disorders.
Abstract: The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required for phagocytosis of shed photoreceptor outer segments. The absence of Mertk results in accumulation of outer segment debris. This subsequently leads to progressive loss of photoreceptor cells. In order to evaluate the efficacy of lentiviral-mediated gene replacement therapy in the RCS rat, we produced recombinant VSV-G pseudotyped HIV-1-based lentiviruses containing a murine Mertk cDNA driven by a spleen focus forming virus (SFFV) promoter. The vector was subretinally injected into the right eye of 10-day-old RCS rats; the left eye was left untreated as an internal control. Here, we present a detailed assessment of the duration and extent of the morphological rescue and the resulting functional benefits. We examined animals at various time points over a period of 7 months by light and electron microscopy, and electroretinography. We observed correction of the phagocytic defect, slowing of photoreceptor cell loss and preservation of retinal function for up to 7 months. This study demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the treatment of such disorders.

Journal ArticleDOI
TL;DR: Intelligent polymers, also called as ‘stimuli responsive polymers’, have a great potential as nonviral vectors to obtain site-, timing-, and duration period-specific gene expression, which is already exhibited in recent studies that are briefly summarized here.
Abstract: The successful gene therapy largely depends on the vector type that allows a selective and efficient gene delivery to target cells with minimal toxicity. Nonviral vectors are much safer and cheaper, can be produced easily in large quantities, and have higher genetic material carrying capacity. However, they are generally less efficient in delivering DNA and initiating gene expression as compared to viral vectors, particularly when used in vivo. As nonviral vectors, polycations may work well for efficient cell uptake and endosomal escape, because they do form compact and smaller complexes with plasmid DNA and carry amine groups, which give positive charge and buffering ability that allows safe escape from endosome/lysosome. However, this is a disadvantage in the following step, which is releasing the plasmid DNA within the cytosol. In order to initiate transcription and enhance gene expression, the polymer/plasmid complex should dissociate after releasing from endosome safely and effectively. There are also other limitations with some of the polycationic carriers, for example, aggregation, toxicity, etc. Intelligent polymers, also called as 'stimuli responsive polymers', have a great potential as nonviral vectors to obtain site-, timing-, and duration period-specific gene expression, which is already exhibited in recent studies that are briefly summarized here.

Journal ArticleDOI
TL;DR: This work describes a self-inactivating HIV-1-derived lentiviral vector encoding human WASP and shows that it effectively transduced bone marrow progenitor cells of WASP knockout (WKO) mice, showing for the first time that cytoskeletal defects can be corrected in WKO mice.
Abstract: Wiskott-Aldrich syndrome (WAS) is an immune deficiency with thrombopenia resulting from mutations in the WASP gene. This gene normally encodes the Wiskott-Aldrich syndrome protein (WASP), a major cytoskeletal regulator expressed in hematopoietic cells. Gene therapy is a promising option for the treatment of WAS, requiring that clinically applicable WASP gene transfer vectors demonstrate efficacy in preclinical studies. Here, we describe a self-inactivating HIV-1-derived lentiviral vector encoding human WASP and show that it effectively transduced bone marrow progenitor cells of WASP knockout (WKO) mice. Transplantation of these transduced cells into lethally irradiated WKO recipients led to stable expression of WASP and correction of immune, inflammatory and cytoskeletal defects. Splenic T-cell proliferation was restored, podosomes were reinstated on bone-marrow-derived dendritic cells and colon inflammation was reduced. This shows for the first time (a) that cytoskeletal defects can be corrected in WKO mice, (b) that human WASP is biologically active in mice and (c) that a lentiviral vector is effective to express human WASP in vivo over several months. These data support further development of such lentiviral vectors for the gene therapy of WAS.

Journal ArticleDOI
TL;DR: This is the first study to demonstrate that Shh delivery to bone defects, in this case through a novel gene-enhanced tissue-engineering approach, results in significant bone regeneration.
Abstract: Improved methods of bone regeneration are needed in the craniofacial rehabilitation of patients with significant bone deficits secondary to tumor resection, congenital deformities, and prior to prosthetic dental reconstruction. In this study, a gene-enhanced tissue-engineering approach was used to assess bone regenerative capacity of Sonic hedgehog (Shh)-transduced gingival fibroblasts, mesenchymal stem cells, and fat-derived cells delivered to rabbit cranial bone defects in an alginate/collagen matrix. Human Shh cDNA isolated from fetal lung tissue was cloned into the replication-incompetent retroviral expression vector LNCX, in which the murine leukemia virus retroviral LTR drives expression of the neomycin-resistance gene. The rat beta-actin enhancer/promoter complex was engineered to drive expression of Shh. Reverse transcriptase-polymerase chain reaction analysis demonstrated that the transduced primary rabbit cell populations expressed Shh RNA. Shh protein secretion was confirmed by enzyme-linked immunosorbent assay (ELISA). Alginate/ type I collagen constructs containing 2 x 10(6) Shh-transduced cells were introduced into male New Zealand White rabbit calvarial defects (8 mm). A total of eight groups (N=6) were examined: unrestored empty defects, matrix alone, matrix plus the three cell populations transduced with both control and Shh expression vectors. The bone regenerative capacity of Shh gene enhanced cells was assessed grossly, radiographically and histologically at 6 and 12 weeks postimplantation. After 6 weeks, new full thickness bone was seen emanating directly from the alginate/collagen matrix in the Shh-transduced groups. Quantitative two-dimensional digital analysis of histological sections confirmed statistically significant (P<0.05) amounts of bone regeneration in all three Shh-enhanced groups compared to controls. Necropsy failed to demonstrate any evidence of treatment-related side effects. This is the first study to demonstrate that Shh delivery to bone defects, in this case through a novel gene-enhanced tissue-engineering approach, results in significant bone regeneration. This encourages further development of the Shh gene-enhanced tissue-engineering approach for bone regeneration.

Journal ArticleDOI
TL;DR: Pre-existing immunity to Ad vector substantially modifies host immune responses to systemic Ad vector, indicating that pre-immunization can be associated with increased mortality shortly after systemic administration of Ad.
Abstract: Toxicity associated with in vivo administration of adenovirus (Ad) vectors has been linked to activation of both innate and adaptive immune responses. Pre-existing immunity to the prevalent Ad serotypes, acquired by the majority of the human population as a result of natural infections, has the potential to modulate vector efficacy and safety. Previously, we evaluated some aspects of toxicity from systemic Ad vector in vector-naive and pre-immunized rhesus monkeys. In this report, we summarize data from several studies analyzing toxic effects from systemically administered E1/E3-deleted Ad vector in vector-naive and pre-immunized C57BL/6 mice. Our results indicate that pre-immunization can be associated with increased mortality shortly after systemic administration of Ad. Transient leukopenia and thrombocytopenia were observed early post vector infusion in both vector-naive and pre-immunized animals. Pre-exposure to the vector did not prevent induction of pro-inflammatory cytokines; however, pre-immunized mice showed less tissue toxicity. Growth of bone marrow myeloid and erythroid progenitors was transiently inhibited in pre-immunized animals, but only the myeloid progenitors were affected in vector-naive animals. In summary, pre-existing immunity to Ad vector substantially modifies host immune responses to systemic Ad vector.

Journal ArticleDOI
TL;DR: The current state of clinical development of immunotoxin approaches is discussed, and the results obtained with the two toxins most frequently used: diphtheria and Pseudomonas toxin-derived proteins are described.
Abstract: The immunotoxin approach is based on the use of tumor-targeting ligands or antibodies that are linked to the catalytic (toxic) moieties of bacterial or plant protein toxins. In this review, we first discuss the current state of clinical development of immunotoxin approaches describing the results obtained with the two toxins most frequently used: diphtheria and Pseudomonas toxin-derived proteins. In the second part of the review, a novel concept will be presented in which the roles are inverted: nontoxic receptor-binding toxin moieties are used for the targeting of therapeutic and diagnostic compounds to cancer or immune cells. The cell biological basis of these novel types of toxin-based therapeutics will be discussed, and we will summarize ongoing preclinical and clinical testing.

Journal ArticleDOI
TL;DR: Cotransduction of synovial membrane to attenuate cartilage malacia associated with synovitis, injury, or early arthritis is suggested and cultured synoviocytes are readily cotransduced by two recombinant adenoviral vectors containing transgenes active in restoring joint health.
Abstract: Combination of growth factor gene-enhanced cartilage matrix synthesis with interleukin-1 receptor antagonist protein (IL-1Ra) abrogation of cartilage matrix degradation may reduce and possibly reverse cartilage loss in synovitis and osteoarthritis. The feasibility of cotransduction of synovial membrane with two such genes that may act on cartilage homeostasis was investigated in an in vitro coculture system. Cultured synoviocytes in monolayer were cotransduced with E1-deleted adenoviral vectors, one containing IGF-I coding sequence under cytomegalovirus (CMV) promoter control (200 multiplicities of infection (moi)), and the second containing IL-1Ra sequence under CMV promoter control (100 moi). Adenovirus-IGF-I (AdIGF-I) transduction and AdIGF-I/AdIL-1Ra cotransduction of synovial monolayer cultures resulted in increased IGF-I mRNA and ligand expression, and similarly AdIL-1Ra and AdIGF-I/AdIL-1Ra-transduced cultures expressed high levels of IL-1Ra. Northern analysis confirmed a single mRNA transcript of the appropriate size for both IGF-I and IL-1Ra transgene expression. Synovial cell monolayer and cartilage explant coculture experiments were used to examine the effects of IGF-I and IL-1Ra protein expressed by transduced synoviocytes on normal and IL-1-depleted cartilage. Transduced monolayer cultures produced peak medium IGF-I content of 114+/-20.2 ng/ml and IL-1Ra levels of 241.8+/-10.5 ng/ml at 48 h after transduction. These IGF-I concentrations were sufficient to produce significantly increased proteoglycan (PG) content of normal cartilage cultured in medium conditioned by AdIGF-I and AdIGF-I/AdIL-1Ra-transduced synoviocytes. Interleukin-1-exposed cartilage was markedly depleted of PG, and this catabolic state was partially reversed in AdIGF-I-transduced cultures and fully reversed by AdIGF-I/AdIL-1Ra-transduced synovial cocultures. These data indicate that cultured synoviocytes are readily cotransduced by two recombinant adenoviral vectors containing transgenes active in restoring joint health. The AdIL-1Ra and AdIGF-I transgenes were abundantly expressed and the secreted products achieved therapeutic concentrations by day 2. The resulting increase in matrix biosynthesis returned cartilage PG content to normal levels. These data suggest that there may be significant value in cotransduction of synovial membrane to attenuate cartilage malacia associated with synovitis, injury, or early arthritis.

Journal ArticleDOI
TL;DR: It is shown that electrically mediated siRNA transfer can suppress transgene expression in adult mice muscles and should provide an efficient approach for a localized delivery of siRNAs in various tissues and organs.
Abstract: Owing to their capacity to induce strong, sequence-specific, gene silencing in cells, short interfering RNAs (siRNAs) represent new potential therapeutic tools. This development requires, however, new safe and efficient in vivo siRNA delivery methods. In the present technical report, we show that electrically mediated siRNA transfer can suppress transgene expression in adult mice muscles. Using electropulsation for siRNA delivery opens the way for a targeted gene silencing on a broad range of tissues. Clinical applications of electropulsation for delivery of other classes of molecules are under trials. We reported that gene silencing was efficiently obtained in vivo in an adult mammal (mouse) with chemically synthesized siRNA after its electrical delivery. The associated gene silencing was followed on the same animal and lasted at least 11 days. Gene silencing was obtained in muscles not only on young adult mice but also on much older animals. No tissue damages were detected under our electrical conditions. Therefore, this method should provide an efficient approach for a localized delivery of siRNAs in various tissues and organs.

Journal ArticleDOI
TL;DR: The ability of lentiviral vectors to transduce myogenic progenitors using a minidystrophin cassette regulated by a muscle-specific promoter suggests that this system could be useful for ex vivo gene therapy of muscular dystrophy.
Abstract: Gene therapy for Duchenne muscular dystrophy (DMD) will require sustained expression of therapeutic dystrophins in striated muscles. Lentiviral vectors have a relatively large transgene carrying capacity and can integrate into nondividing cells. We therefore explored the use of lentiviral vectors for transferring genes into mouse skeletal muscle cells. These vectors successfully transferred a minidystrophin expression cassette into mdx muscles, and minidystrophin expression persisted and prevented subsequent muscle fiber degeneration for at least 6 months. However, only low to moderate levels of skeletal muscle transduction could be obtained by intramuscular injection of the highest currently available lentiviral doses. Using cultured cells, the lentiviral vectors effectively transduced proliferating and terminally differentiated muscle cells, indicating that cell cycling is not essential for transduction of myogenic cells. We further showed that lentiviral vectors efficiently transduced both primary myoblasts and multipotent adult progenitor cells (MAPCs) in vitro, and the cells persistently expressed transgenes without any obvious toxicity. When mdx primary myoblasts were genetically modified with minidystrophin vectors and transplanted into mdx skeletal muscles, significant numbers of dystrophin-expressing myofibers formed. Finally, we showed that a short, highly active CK6 regulatory cassette directed muscle-specific activity in the context of the lentiviral vectors. The ability of lentiviral vectors to transduce myogenic progenitors using a minidystrophin cassette regulated by a muscle-specific promoter suggests that this system could be useful for ex vivo gene therapy of muscular dystrophy.

Journal ArticleDOI
TL;DR: PEGylation did not compromise transduction efficiency in vitro and in vivo and reduced peak serum IL-6 levels two-fold and IL-12 and TNF-α levels were reduced three- and seven-fold, respectively.
Abstract: Transgene expression from helper-dependent adenoviral (HD-Ad) vectors is effective and long lasting, but not permanent. Their use is also limited by the host response against capsid proteins that precludes successful gene expression upon readministration. In this report, we test the hypothesis that PEGylation of HD-Ad reduces its toxicity and promotes transgene expression upon readministration. PEGylation did not compromise transduction efficiency in vitro and in vivo and reduced peak serum IL-6 levels two-fold. IL-12 and TNF-α levels were reduced three- and seven-fold, respectively. Thrombocytopenia was not detected in mice treated with the PEGylated vector. Serum transaminases were not significantly elevated in mice treated with either vector. Mice immunized with 1 × 1011 particles of unmodified HD-Ad expressing human alpha-1 antitrypsin (hA1AT) were rechallenged 28 days later with 8 × 1010 particles of unmodified or PEG-conjugated vector expressing beta-galactosidase. Trace levels of beta-galactosidase (52.23±19.2 pg/mg protein) were detected in liver homogenates of mice that received two doses of unmodified HD-Ad. Mice rechallenged with PEGylated HD-Ad produced significant levels of beta-galactosidase (5.1±0.4 × 105 pg/mg protein, P=0.0001). This suggests that PEGylation of HD-Ad vectors may be appropriate for their safe and efficient use in the clinic.

Journal ArticleDOI
TL;DR: Results suggest that lentiviral siRNAs targeting multiple conserved HIV-1 sequences holds significant promise for the treatment of HIV-2 infections and reduced replication kinetics of AIDS-1 in primary human peripheral blood lymphocytes.
Abstract: The high mutation rate of the human immunodeficiency virus (HIV) makes it difficult for any therapy employing a single anti-HIV targeting mechanism to sustain prolonged effect. In an attempt to explore novel therapy for AIDS, we developed and tested lentiviral small interfering RNA (siRNA) vectors targeting multiple highly conserved regions in the HIV type 1 (HIV-1) genome. The siRNA expression cassette was cloned into an extensively deleted HIV-1-derived lentiviral self-inactivating insulator (SIN) insulator [corrected] vector. Although some of the siRNAs targeting sites were also present in the helper construct of the vector system, the production of these lentiviral siRNA vectors were not significantly affected. When tested against different HIV-1 strains including pNL4-3 (subtype B), p89.6 (subtype B) and p90CF402.1.8 (subtype A/E recombinant), the siRNAs targeting conserved gag, pol, int and vpu, but not U3, nef or U5 regions, efficiently inhibited replication of all three viral strains. These lentiviral siRNA vectors also protected host cells from syncytium-forming macrophage- and T-cell-tropic HIV-1-induced cytotoxicity. Transduction of a long-term chronically infected human lymphoma cell line with lentiviral siRNAs resulted in stable inhibition of HIV-1 replication. Northern analysis showed that both genomic and subgenomic viral RNA species were downregulated. In addition, the viral RNA was inhibited in both the nuclear and cytoplasmic compartments of [corrected] chronically infected cells after prolonged passage, suggesting that [corrected] lentiviral siRNAs have a nuclear effect [corrected] Using these lentiviral siRNA [corrected] vectors, we further demonstrated reduced replication kinetics of HIV-1 in primary human peripheral blood lymphocytes. These results suggest that lentiviral siRNAs targeting multiple conserved HIV-1 sequences holds significant promise for the treatment of HIV-1 infections.

Journal ArticleDOI
TL;DR: Investigating the efficiency of transient cutaneous adenoviral transfection with human cathelicidin hCAP-18/LL-37 in infected burn wounds found it significantly more effective than administration of synthetic host defense peptides and might be a potential adjunct for wound treatment in the near future.
Abstract: Host defense peptides (HDP) are naturally occurring effector molecules of the innate immune system, which might be an alternative to currently used antibiotics. The objective of this study was to investigate the efficiency of transient cutaneous adenoviral transfection with human cathelicidin hCAP-18/LL-37 in infected burn wounds. Specific transgene expression was analyzed in vitro on mRNA and protein level using real-time PCR and Western-blot. Male Sprague-Dawley rats (n=40) received a second degree scald burn on both flanks (5% BSA), which were inoculated with 10(8) colony-forming units (CFU) Pseudomonas aeruginosa. Two days later, rats were randomized into the following groups: (1) adenoviral delivery of LL-37 (Ad5-hCAP-18, n=10), (2) synthetic host defense peptide LL-37 (1 mg; n=10), (3) carrier control (PBS, n=10) and (4) empty-virus control (Ad5-LacZ, n=10). Agents were injected intradermally and subcutaneously into both flanks. After either 2 or 7 days, skin samples were harvested and homogenized. CFU per gram tissue were determined. The hCAP-18/LL-37 expression was confirmed by real-time PCR and localized using in situ hybridization. In vitro transfection of cutaneous cells delivered a specific response on mRNA production. Western blot analysis revealed protein expression of hCAP-18/LL-37 in conditioned medium and cell pellet. The host defense peptide LL-37 was detectable after cleavage of the inactive pro-form hCAP-18/LL-37 with human elastase. Ad5-hCAP-18 showed a significant bacterial inhibition of approximately 10 000 fold compared to the control group (P<0.001) and 1000-fold (P<0.001) compared to the synthetic HDP LL-37 7 post-transfection. No inhibition was observed for the carrier or empty-virus control. Real-time PCR and in situ hybridization confirmed expression of hCAP-18/LL-37. In conclusion, transient cutaneous adenoviral delivery of the host defense peptide hCAP-18/LL-37 is significantly more effective than administration of synthetic host defense peptides and might be a potential adjunct for wound treatment in the near future.

Journal ArticleDOI
TL;DR: DC electroporated after maturation are more efficient in in vitro migration assays and at least as effective in antigen presentation as DC electroporate DC before maturation.
Abstract: Until now, studies utilizing mRNA electroporation as a tool for the delivery of tumor antigens to human monocyte-derived dendritic cells (DC) have focused on DC electroporated in an immature state. Immature DC are considered to be specialized in antigen capture and processing, whereas mature DC present antigen and have an increased T-cell stimulatory capacity. Therefore, the consensus has been to electroporate DC before maturation. We show that the transfection efficiency of DC electroporated either before or after maturation was similarly high. Both immature and mature electroporated DC, matured in the presence of an inflammatory cytokine cocktail, expressed mature DC surface markers and preserved their capacity to secrete cytokines and chemokines upon CD40 ligation. In addition, both immature and mature DC can be efficiently cryopreserved before or after electroporation without deleterious effects on viability, phenotype or T-cell stimulatory capacity including in vitro antigen-specific T-cell activation. However, DC electroporated after maturation are more efficient in in vitro migration assays and at least as effective in antigen presentation as DC electroporated before maturation. These results are important for vaccination strategies where an optimal antigen presentation by DC after migration to the lymphoid organs is crucial.

Journal ArticleDOI
TL;DR: SiRNA-directed TGF-β1 silencing may be of therapeutic value in the prevention and treatment of fibrotic diseases and is investigated in rat cultured mesangial cells.
Abstract: The short synthetic interfering RNA duplexes (siRNAs) can selectively suppress gene expression in somatic mammalian cells without nonselective toxic effects of double-stranded RNA (dsRNA). However, a selective in vivo delivery of siRNA transfer has not been reported in kidney. Here, we investigated whether injection of synthetic siRNAs via renal artery followed by electroporation could be effective and therapeutic in silencing specific gene in glomerulus. We investigated the effect of siRNA in rat cultured mesangial cells (MCs) and showed that siRNA sequence-specific suppression of transgene expression was over a 1000-fold more potent than that by antisense oligodeoxynucleotide (ASODN). Transfection of siRNA targeting luciferase into rat kidneys significantly inhibited expression of a cotransfected luciferase expression vector in vivo. The delivery of siRNA targeting enhanced green fluorescent protein (EGFP) in the transgenic 'green' rat reduced endogenous EGFP expression, mainly in glomerular MCs. Furthermore, RNAi targeting against TGF-beta1 significantly suppressed TGF-beta1 mRNA and protein expression, thereby ameliorated the progression of matrix expansion in experimental glomerulonephritis. In addition, vector-based RNAi also inhibited TGF-beta1 expression in vitro and in vivo. In conclusion, siRNA-directed TGF-beta1 silencing may be of therapeutic value in the prevention and treatment of fibrotic diseases.