scispace - formally typeset
Search or ask a question

Showing papers in "Mathematical Problems in Engineering in 2019"


Journal ArticleDOI
TL;DR: A comprehensive review of the recent development in the area of CBIR and image representation is presented and the main aspects of various image retrieval and image representations models from low-level feature extraction to recent semantic deep-learning approaches are analyzed.
Abstract: Multimedia content analysis is applied in different real-world computer vision applications, and digital images constitute a major part of multimedia data. In last few years, the complexity of multimedia contents, especially the images, has grown exponentially, and on daily basis, more than millions of images are uploaded at different archives such as Twitter, Facebook, and Instagram. To search for a relevant image from an archive is a challenging research problem for computer vision research community. Most of the search engines retrieve images on the basis of traditional text-based approaches that rely on captions and metadata. In the last two decades, extensive research is reported for content-based image retrieval (CBIR), image classification, and analysis. In CBIR and image classification-based models, high-level image visuals are represented in the form of feature vectors that consists of numerical values. The research shows that there is a significant gap between image feature representation and human visual understanding. Due to this reason, the research presented in this area is focused to reduce the semantic gap between the image feature representation and human visual understanding. In this paper, we aim to present a comprehensive review of the recent development in the area of CBIR and image representation. We analyzed the main aspects of various image retrieval and image representation models from low-level feature extraction to recent semantic deep-learning approaches. The important concepts and major research studies based on CBIR and image representation are discussed in detail, and future research directions are concluded to inspire further research in this area.

192 citations


Journal ArticleDOI
TL;DR: In this article, the Radial Basis Function (RBF) neural network was used to forecast energy consumption in wastewater treatment plant (WTP) and the results showed that the RBF model using the date from the subset has better performance than the multivariable linear regression (MLR) model.
Abstract: Wastewater treatment plant (WWTP) is the energy-intensive industries. Energy is consumed at every stage of wastewater treatment. It is the main contributor to the costs of WWTP. Analysis and forecasting of energy consumption are critical to energy-saving. Many factors influence energy consumption. The relationship between energy consumption and wastewater is complex and challenging to identify. This article employed the fuzzy clustering method to categorize the sample data of WWTP and analyzed the relationship between energy consumption and the influence factors in different categories. The study found that energy efficiency in various categories was changed and the same influence factors in different types had different influence intensity. The Radial Basis Function (RBF) neural network was used to forecast energy consumption. The data from the complete set and categories was adopted to train and test the model. The results show that the RBF model using the date from the subset has better performance than the multivariable linear regression (MLR) model. The results of this study provided an essential theoretical basis for energy-saving in WWTP.

102 citations


Journal ArticleDOI
TL;DR: This paper makes the first attempt to propose a novel BIM system model called bcBIM to tackle information security in mobile cloud architectures and proposes a method of BIM data organization based on blockchains and discusses it based on private and public blockchain.
Abstract: Building Information Modeling (BIM) is envisioned as an indispensable opportunity in the architecture, engineering, and construction (AEC) industries as a revolutionary technology and process. Smart construction relies on BIM for manipulating information flow, data flow, and management flow. Currently, BIM model has been explored mainly for information construction and utilization, but rare works pay efforts to information security, e.g., critical model audit and sensitive model exposure. Moreover, few BIM systems are proposed to chase after upcoming computing paradigms, such as mobile cloud computing, big data, blockchain, and Internet of Things. In this paper, we make the first attempt to propose a novel BIM system model called bcBIM to tackle information security in mobile cloud architectures. More specifically, bcBIM is proposed to facilitate BIM data audit for historical modifications by blockchain in mobile cloud with big data sharing. The proposed bcBIM model can guide the architecture design for further BIM information management system, especially for integrating BIM cloud as a service for further big data sharing. We propose a method of BIM data organization based on blockchains and discuss it based on private and public blockchain. It guarantees to trace, authenticate, and prevent tampering with BIM historical data. At the same time, it can generate a unified format to support future open sharing, data audit, and data provenance.

100 citations


Journal ArticleDOI
TL;DR: In this paper, a multicriteria-based equipment selection framework on the triple bottom line of sustainability in the context of the Malaysian construction industry has been developed and tested, and the application of analytical hierarchy process (AHP) established the sustainable procurement index with a consistent sensitivity analysis results.
Abstract: Sustainable procurement is an emerging theme in the construction industry across the globe. However, organizations in the construction industry often encounter impediments in improving environmental performance in construction projects, especially in procurement. Besides its other facets, procurement of construction equipment is inherited to be capital-intensive and vital for managing environmental concerns associated with built environment projects. In this regard, selection criteria in such procurement processes are generally supportive of considering cost and engineering specifications as key parameters. However, sustainability apprehensions in today’s Malaysian construction industry have mounted pressure on industry professionals to rethink their equipment acquisition strategies. The notion of green or sustainable procurement is still infancy for the Malaysian construction industry and facing challenges for embedding it in the current procurement practices. This research aims to address these apprehensions by considering six main criteria, namely, life cycle cost (LCC), performance (P), system capability (SC), operational convenience (OC), environmental impact (EI), and social benefits (SBs), and their 38 subcriteria towards procurement of sustainable construction equipment. A multicriteria-based equipment selection framework on the triple bottom line of sustainability in the context of the Malaysian construction industry has been developed and tested. The application of analytical hierarchy process (AHP) established the sustainable procurement index with a consistent sensitivity analysis results. As such, the proposed procurement index shall help decision-makers in the process of the acquisition of sustainable construction equipment in Malaysia.

73 citations


Journal ArticleDOI
TL;DR: In this article, the relationship between temperature, pH, and voltage of a single-chamber microbial fuel cell (Sediment microbial fuel cells) was analyzed in detail, and the correlation between them was calculated using SPSS software.
Abstract: Sediment microbial fuel cells (SMFCs) are a typical microbial fuel cell without membranes. They are a device developed on the basis of electrochemistry and use microbes as catalysts to convert chemical energy stored in organic matter into electrical energy. This study selected a single-chamber SMFC as a research object, using online monitoring technology to accurately measure the temperature, pH, and voltage of the microbial fuel cell during the start-up process. In the process of microbial fuel cell start-up, the relationship between temperature, pH, and voltage was analysed in detail, and the correlation between them was calculated using SPSS software. The experimental results show that, at the initial stage of SMFC, the purpose of rapid growth of power production can be achieved by a large increase in temperature, but once the temperature is reduced, the power production of SMFC will soon recover to the state before the temperature change. At the beginning of SMFC, when the temperature changes drastically, pH will change the same first, and then there will be a certain degree of rebound. In the middle stage of SMFC start-up, even if the temperature will return to normal after the change, a continuous temperature drop in a short time will lead to a continuous decrease in pH value. The RBF neural network and ELM neural network were used to perform nonlinear system regression in the later stage of SMFC start-up and using the regression network to forecast part of the data. The experimental results show that the ELM neural network is more excellent in forecasting SMFC system. This article will provide important guidance for shortening start-up time and increasing power output.

72 citations


Journal ArticleDOI
TL;DR: In order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms.
Abstract: In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.

70 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented the applications of entropy generation for SWCNTs and MWCNTs based on kerosene oil for Casson nanofluid flow by rotating channels.
Abstract: We presented the applications of entropy generation for SWCNTs and MWCNTs based on kerosene oil for Casson nanofluid flow by rotating channels. Kerosene oil has advanced thermal conductivity and exclusive features and has a lot of practical uses due to its unique behavior. That is why we have used kerosene oil as a based fluid. For the entropy generation second law of thermodynamics is applied and implemented for the nanofluid transport mechanism. In the presence of magnetic field, the effects of thermal radiations and heat source/sink on the temperature profiles are studied. The fluid flow is supposed in steady state. With the help of suitable similitude parameters, the leading equations have been transformed to a set of differential equations. The solution of the modeled problem has been carried out with the homotopic approach. The physical properties of carbon nanotubes are shown through tables. The effects of the imbedded physical parameters on the velocities, temperature, entropy generation rate, and Bejan number profiles are investigated and presented through graphs. Moreover, the impact of significant parameters on surface drag force and heat transfer rate is tabulated.

68 citations


Journal ArticleDOI
Guoqing Xia1, Zhiwei Han1, Bo Zhao1, Caiyun Liu1, Xinwei Wang1 
TL;DR: The purpose of this study was to plan a global path with multiple objectives, such as path length, energy consumption, path smoothness, and path safety, for USV in marine environments using an improved quantum ant colony algorithm.
Abstract: As a tool to monitor marine environments and to perform dangerous tasks instead of manned vessels, unmanned surface vehicles (USVs) have extensive applications. Because most path planning algorithms have difficulty meeting the mission requirements of USVs, the purpose of this study was to plan a global path with multiple objectives, such as path length, energy consumption, path smoothness, and path safety, for USV in marine environments. A global path planning algorithm based on an improved quantum ant colony algorithm (IQACA) is proposed. The improved quantum ant colony algorithm is an algorithm that benefits from the high efficiency of quantum computing and the optimization ability of the ant colony algorithm. The proposed algorithm can plan a path considering multiple objectives simultaneously. The simulation results show that the proposed algorithm’s obtained minimum was 2.1–6.5% lower than those of the quantum ant colony algorithm (QACA) and ant colony algorithm (ACA), and the number of iterations required to converge to the minimum was 11.2–24.5% lower than those of the QACA and ACA. In addition, the optimized path for the USV was obtained effectively and efficiently.

65 citations


Journal ArticleDOI
TL;DR: A novel behavior-based deep learning framework (BDLF) which is built in cloud platform for detecting malware in IoT environment and can learn the semantics of higher-level malicious behaviors from behavior graphs and increase the average detection precision by 1.5%.
Abstract: The Internet of Things (IoT) provides various benefits, which makes smart device even closer. With more and more smart devices in IoT, security is not a one-device affair. Many attacks targeted at traditional computers in IoT environment may also aim at other IoT devices. In this paper, we consider an approach to protect IoT devices from being attacked by local computers. In response to this issue, we propose a novel behavior-based deep learning framework (BDLF) which is built in cloud platform for detecting malware in IoT environment. In the proposed BDLF, we first construct behavior graphs to provide efficient information of malware behaviors using extracted API calls. We then use a neural network-Stacked AutoEncoders (SAEs) for extracting high-level features from behavior graphs. The layers of SAEs are inserted one after another and the last layer is connected to some added classifiers. The architecture of the SAEs is 6,000-2,000-500. The experiment results demonstrate that the proposed BDLF can learn the semantics of higher-level malicious behaviors from behavior graphs and further increase the average detection precision by 1.5%.

63 citations


Journal ArticleDOI
TL;DR: A new analytic method is offered that can help human resource departments predict employee turnover more accurately and its experimental results provide further insights to reduce employee turnover intention.
Abstract: Employee turnover is considered a major problem for many organizations and enterprises. The problem is critical because it affects not only the sustainability of work but also the continuity of enterprise planning and culture. Therefore, human resource departments are paying greater attention to employee turnover seeking to improve their understanding of the underlying reasons and main factors. To address this need, this study aims to enhance the ability to forecast employee turnover and introduce a new method based on an improved random forest algorithm. The proposed weighted quadratic random forest algorithm is applied to employee turnover data with high-dimensional unbalanced characteristics. First, the random forest algorithm is used to order feature importance and reduce dimensions. Second, the selected features are used with the random forest algorithm and the F-measure values are calculated for each decision tree as weights to build the prediction model for employee turnover. In the area of employee turnover forecasting, compared with the random forest, C4.5, Logistic, BP, and other algorithms, the proposed algorithm shows significant improvement in terms of various performance indicators, specifically recall and F-measure. In the experiment using the employee dataset of a branch of a communications company in China, the key factors influencing employee turnover were identified as monthly income, overtime, age, distance from home, years at the company, and percent of salary increase. Among them, monthly income and overtime were the two most important factors. The study offers a new analytic method that can help human resource departments predict employee turnover more accurately and its experimental results provide further insights to reduce employee turnover intention.

62 citations


Journal ArticleDOI
TL;DR: The Gaussian regularization method is introduced to accelerate the convergence rate of periodic nonuniform sampling series and it is proved that the truncation error of theGaussian regularized periodic non uniform samplingseries decays exponentially.
Abstract: The periodic nonuniform sampling plays an important role in digital signal processing and other engineering fields. In this paper, we introduce the Gaussian regularization method to accelerate the convergence rate of periodic nonuniform sampling series. We prove that the truncation error of the Gaussian regularized periodic nonuniform sampling series decays exponentially. Numerical experiments are presented to demonstrate our result.

Journal ArticleDOI
TL;DR: DT-ELM, a novel hybrid algorithm combining decision tree and extreme learning machine (ELM), which requires no iterative training is proposed, which is effective on the benchmark KDD 2015 dataset.
Abstract: Massive Open Online Courses (MOOCs) have boomed in recent years because learners can arrange learning at their own pace. High dropout rate is a universal but unsolved problem in MOOCs. Dropout prediction has received much attention recently. A previous study reported the problem of learning behavior discrepancy leading to a wide range of fluctuation of prediction results. Besides, previous methods require iterative training which is time intensive. To address these problems, we propose DT-ELM, a novel hybrid algorithm combining decision tree and extreme learning machine (ELM), which requires no iterative training. The decision tree selects features with good classification ability. Further, it determines enhanced weights of the selected features to strengthen their classification ability. To achieve accurate prediction results, we optimize ELM structure by mapping the decision tree to ELM based on the entropy theory. Experimental results on the benchmark KDD 2015 dataset demonstrate the effectiveness of DT-ELM, which is 12.78%, 22.19%, and 6.87% higher than baseline algorithms in terms of accuracy, AUC, and F1-score, respectively.

Journal ArticleDOI
TL;DR: In this paper, the effects of FDI and foreign trade on Chinese provincial CO2 emissions for the period of 1997-2014 were investigated. And the results indicated that the positive indirect effects were greater than the negative direct effects; thus the total effects are positive.
Abstract: The environmental impacts of foreign direct investment (FDI) and foreign trade have attracted much attention recently. This paper employs panel quantile regression to explore the effects of FDI and foreign trade on Chinese provincial CO2 emissions for the period of 1997-2014. The results indicate that the effect of FDI on CO2 emissions is negative and significant except at the and quantiles. Foreign trade has a significant negative effect on CO2 emissions at upper quantiles, and the degree of the effect increases gradually with the increase of CO2 emissions. The results also suggest that the inverted U-shaped environmental Kuznets curve (EKC) is valid only in the least and most polluted provinces. Nevertheless, the positive indirect effects of FDI and foreign trade on CO2 emissions are greater than the negative direct effects; thus the total effects are positive. Finally, several policy implications are proposed for China based on the empirical results obtained.

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the proposed RF-CSCA-SVM framework can be regarded as a promising success with the excellent predictive performance, and the established adaptive SVM framework might serve as a new candidate of powerful tools for entrepreneurial intention prediction.
Abstract: Under the background of “innovation and entrepreneurship,” how to scientifically and rationally choose employment or independent entrepreneurship according to their own comprehensive situation is of great significance to the planning and development of their own career and the social adaptation of university personnel training. This study aims to develop an adaptive support vector machine framework, called RF-CSCA-SVM, for predicting college students' entrepreneurial intention in advance; that is, students choose to start a business or find a job after graduation. RF-CSCA-SVM combines random forest (RF), support vector machine (SVM), sine cosine algorithm (SCA), and chaotic local search. In this framework, RF is used to select the most important factors; SVM is employed to establish the relationship model between the factors and the students’ decision to choose to start their own business or look for jobs. SCA is used to tune the optimal parameters for SVM. Additionally, chaotic local search is utilized to enhance the search capability of SCA. A total of 300 students were collected to develop the predictive model. To validate the developed method, other four meta-heuristic based SVM methods were used for comparison in terms of classification accuracy, Matthews Correlation Coefficients (MCC), sensitivity, and specificity. The experimental results demonstrate that the proposed method can be regarded as a promising success with the excellent predictive performance. Promisingly, the established adaptive SVM framework might serve as a new candidate of powerful tools for entrepreneurial intention prediction.

Journal ArticleDOI
TL;DR: In this paper, the behavioral characteristics of gyrotactic microorganism effects on the MHD flow of Jeffrey nanofluid were investigated and the optimal solutions for the governing equations were tackled by optimal homotopy analysis method.
Abstract: The particular inquiry is made to envision the behavioral characteristics of gyrotactic microorganism effects on the MHD flow of Jeffrey nanofluid. Together the nanoparticles and motile microorganism are inducted into the modeled nonlinear differential equations. The optimal solutions for the governing equations are tackled by optimal homotopy analysis method. The physical characteristics of the relatable parameters are explored and deliberated in terms of graphs and numerical charts. Also, the precision of the present findings is certified by equating them with the previously published work. It is explored that rescaled density of the motile microorganisms contracts with bioconvection Peclet number . It is seen that bioconvection Rayleigh number shrinks the magnitude of tangential velocity. Also, bioconvection Schmidt number augments the reduced density number of the motile microorganisms.

Journal ArticleDOI
TL;DR: A new multioptimal combination wavelet transform (MOCWT) method with a novel threshold-denoising function is presented to reduce the degree of distortion in signal reconstruction, and experimental results clearly showed that the proposed MOCWT outperforms the traditional methods in the term of prediction accuracy.
Abstract: For profit maximization, the model-based stock price prediction can give valuable guidance to the investors. However, due to the existence of the high noise in financial data, it is inevitable that the deep neural networks trained by the original data fail to accurately predict the stock price. To address the problem, the wavelet threshold-denoising method, which has been widely applied in signal denoising, is adopted to preprocess the training data. The data preprocessing with the soft/hard threshold method can obviously restrain noise, and a new multioptimal combination wavelet transform (MOCWT) method is proposed. In this method, a novel threshold-denoising function is presented to reduce the degree of distortion in signal reconstruction. The experimental results clearly showed that the proposed MOCWT outperforms the traditional methods in the term of prediction accuracy.

Journal ArticleDOI
TL;DR: The performance of the proposed method is improved comparing with the original Faster R-CNN framework by 4% on the KITTI test set and 24.5%" on the LSVH test set.
Abstract: Vision-based vehicle detection plays an important role in intelligent transportation systems. With the fast development of deep convolutional neural networks (CNNs), vision-based vehicle detection approaches have achieved significant improvements compared to traditional approaches. However, due to large vehicle scale variation, heavy occlusion, or truncation of the vehicle in an image, recent deep CNN-based object detectors still showed a limited performance. This paper proposes an improved framework based on Faster R-CNN for fast vehicle detection. Firstly, MobileNet architecture is adopted to build the base convolution layer in Faster R-CNN. Then, NMS algorithm after the region proposal network in the original Faster R-CNN is replaced by the soft-NMS algorithm to solve the issue of duplicate proposals. Next, context-aware RoI pooling layer is adopted to adjust the proposals to the specified size without sacrificing important contextual information. Finally, the structure of depthwise separable convolution in MobileNet architecture is adopted to build the classifier at the final stage of the Faster R-CNN framework to classify proposals and adjust the bounding box for each of the detected vehicle. Experimental results on the KITTI vehicle dataset and LSVH dataset show that the proposed approach achieved better performance compared to original Faster R-CNN in both detection accuracy and inference time. More specific, the performance of the proposed method is improved comparing with the original Faster R-CNN framework by 4% on the KITTI test set and 24.5% on the LSVH test set.

Journal ArticleDOI
TL;DR: The proposed activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual and predicted wind speed as well as the comparison for the logsig transfer function results.
Abstract: Since wind power is directly influenced by wind speed, long-term wind speed forecasting (WSF) plays an important role for wind farm installation. WSF is essential for controlling, energy management and scheduled wind power generation in wind farm. The proposed investigation in this paper provides 30-days-ahead WSF. Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive Exogenous (NARX) Neural Network (NN) with different network settings have been used to facilitate the wind power generation. The essence of this study is that it compares the effect of activation functions (namely, tansig and logsig) in the performance of time series forecasting since activation function is the core element of any artificial neural network model. A set of wind speed data was collected from different meteorological stations in Malaysia, situated in Kuala Lumpur, Kuantan, and Melaka. The proposed activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual and predicted wind speed as well as the comparison for the logsig transfer function results.

Journal ArticleDOI
TL;DR: This paper proposes a novel single-stage buck-boost three-Level neutral-point-clamped (NPC) inverter with two independent dc sources coupled for the grid-tied photovoltaic application, which can effectively solve the unbalanced operational conditions generally appearing between two independent PV sources.
Abstract: This paper proposes a novel single-stage buck-boost three-Level neutral-point-clamped (NPC) inverter with two independent dc sources coupled for the grid-tied photovoltaic (PV) application, which can effectively solve the unbalanced operational conditions generally appearing between two independent PV sources. The proposed control scheme can simultaneously guarantee the maximum power point (MPP) operation of both PV sources and maintain the output waveform quality. Compared to the traditional two-stage PV inverter, the proposed NPC inverter could reduce the PV array voltage requirement and the voltage rating of dc-link capacitors; also it shows advantages in operational efficiency. MATLAB simulations and experimental results are presented to examine the performance of the proposed three-level NPC inverter.

Journal ArticleDOI
TL;DR: Simulation and experimental results demonstrate that the hybrid optimal algorithm is capable of handling nonlinear optimization problems with multiconstraints and local optimal with better performance than PSO and CS algorithms.
Abstract: This paper deals with the hybrid particle swarm optimization-Cuckoo Search (PSO-CS) algorithm which is capable of solving complicated nonlinear optimization problems. It combines the iterative scheme of the particle swarm optimization (PSO) algorithm and the searching strategy of the Cuckoo Search (CS) algorithm. Details of the PSO-CS algorithm are introduced; furthermore its effectiveness is validated by several mathematical test functions. It is shown that Levy flight significantly influences the algorithm’s convergence process. In the second part of this paper, the proposed PSO-CS algorithm is applied to two different engineering problems. The first application is nonlinear parameter identification for the motor drive servo system. As a result, a precise nonlinear Hammerstein model is obtained. The second one is reactive power optimization for power systems, where the total loss of the researched IEEE 14-bus system is minimized using PSO-CS approach. Simulation and experimental results demonstrate that the hybrid optimal algorithm is capable of handling nonlinear optimization problems with multiconstraints and local optimal with better performance than PSO and CS algorithms.

Journal ArticleDOI
TL;DR: This study proposes a C-A-XGBoost forecasting model, which is proved to outperform than other four models using data from Jollychic cross-border e-commerce platform and takes sales features of commodities and tendency of data series into account.
Abstract: Sales forecasting is even more vital for supply chain management in e-commerce with a huge amount of transaction data generated every minute. In order to enhance the logistics service experience of customers and optimize inventory management, e-commerce enterprises focus more on improving the accuracy of sales prediction with machine learning algorithms. In this study, a C-A-XGBoost forecasting model is proposed taking sales features of commodities and tendency of data series into account, based on the XGBoost model. A C-XGBoost model is first established to forecast for each cluster of the resulting clusters based on two-step clustering algorithm, incorporating sales features into the C-XGBoost model as influencing factors of forecasting. Secondly, an A-XGBoost model is used to forecast the tendency with the ARIMA model for the linear part and the XGBoost model for the nonlinear part. The final results are summed by assigning weights to forecasting results of the C-XGBoost and A-XGBoost models. By comparison with the ARIMA, XGBoost, C-XGBoost, and A-XGBoost models using data from Jollychic cross-border e-commerce platform, the C-A-XGBoost is proved to outperform than other four models.

Journal ArticleDOI
TL;DR: In this paper, the problem of two-dimensional steady laminar MHD boundary layer flow past a wedge with heat and mass transfer of nanofluid embedded in porous media with viscous dissipation, Brownian motion, and thermophoresis effect is considered.
Abstract: The problem of two-dimensional steady laminar MHD boundary layer flow past a wedge with heat and mass transfer of nanofluid embedded in porous media with viscous dissipation, Brownian motion, and thermophoresis effect is considered. Using suitable similarity transformations, the governing partial differential equations have been transformed to nonlinear higher-order ordinary differential equations. The transmuted model is shown to be controlled by a number of thermophysical parameters, viz. the pressure gradient, magnetic, permeability, Prandtl number, Lewis number, Brownian motion, thermophoresis, and Eckert number. The problem is then solved numerically using spectral quasilinearization method (SQLM). The accuracy of the method is checked against the previously published results and an excellent agreement has been obtained. The velocity boundary layer thickness reduces with an increase in pressure gradient, permeability, and magnetic parameters, whereas thermal boundary layer thickness increases with an increase in Eckert number, Brownian motion, and thermophoresis parameters. Greater values of Prandtl number, Lewis number, Brownian motion, and magnetic parameter reduce the nanoparticles concentration boundary layer.

Journal ArticleDOI
TL;DR: On large-scale stock datasets, synthetically evaluating various ML algorithms and observing the daily trading performance of stocks under transaction cost and no transaction cost shows that traditional ML algorithms have a better performance in most of the directional evaluation indicators.
Abstract: According to the forecast of stock price trends, investors trade stocks. In recent years, many researchers focus on adopting machine learning (ML) algorithms to predict stock price trends. However, their studies were carried out on small stock datasets with limited features, short backtesting period, and no consideration of transaction cost. And their experimental results lack statistical significance test. In this paper, on large-scale stock datasets, we synthetically evaluate various ML algorithms and observe the daily trading performance of stocks under transaction cost and no transaction cost. Particularly, we use two large datasets of 424 S&P 500 index component stocks (SPICS) and 185 CSI 300 index component stocks (CSICS) from 2010 to 2017 and compare six traditional ML algorithms and six advanced deep neural network (DNN) models on these two datasets, respectively. The experimental results demonstrate that traditional ML algorithms have a better performance in most of the directional evaluation indicators. Unexpectedly, the performance of some traditional ML algorithms is not much worse than that of the best DNN models without considering the transaction cost. Moreover, the trading performance of all ML algorithms is sensitive to the changes of transaction cost. Compared with the traditional ML algorithms, DNN models have better performance considering transaction cost. Meanwhile, the impact of transparent transaction cost and implicit transaction cost on trading performance are different. Our conclusions are significant to choose the best algorithm for stock trading in different markets.

Journal ArticleDOI
TL;DR: A deep learning convolutional neural network (CNN) was introduced to solve the problem of remote sensing recognition of landslide recognition, and the recognition efficiency was improved, proving the effectiveness and feasibility of the method.
Abstract: Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.

Journal ArticleDOI
TL;DR: In this article, an Enhanced RIM (ERIM) is proposed in which the Collaborative Optimization (CO) strategy is combined with ERIM and the formula of CO using ERIM is given to solve reliability-based multidisciplinary design and optimization problems.
Abstract: When designing complex mechanical equipment, uncertainties should be considered to enhance the reliability of performance. The Reliability Index Method (RIM) is a powerful tool which has been widely utilized in engineering design under uncertainties. To reduce computational cost in RIM, first or second order Taylor approximation is introduced to convert nonlinear probability constraint to the equivalent linear constraint during optimization process. Generally, this approximation process is performed at Most Probable Point (MPP) to reduce the loss of reliability analysis accuracy. However, it is difficult for the original RIM to be utilized in the situation that MPP is collinear and RIM has the same direction with the gradient of performance function at MPP. To tackle the above challenges, an Enhanced RIM (ERIM) is proposed in this study. The Collaborative Optimization (CO) strategy is combined with ERIM. The formula of CO using ERIM is given to solve reliability-based multidisciplinary design and optimization problems. A design problem of the speed reducer is utilized in this study to show the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: Results show that the proposed methodology of automatic generation of test scenarios for intelligent driving systems can ensure required coverage with a significantly improved scenario complexity, and the generated test scenario can find system defects more efficiently.
Abstract: In this paper, a methodology of automatic generation of test scenarios for intelligent driving systems is proposed, which is based on the combination of the test matrix (TM) and combinatorial testing (CT) methods together. With a hierarchical model of influence factors, an evaluation index for scenario complexity is designed. Then an improved CT algorithm is proposed to make a balance between test efficiency, condition coverage, and scenario complexity. This method can ensure the required combinational coverage and at the same time increase the overall complexity of generated scenarios, which is not considered by CT. Furthermore, the way to find the best compromise between efficiency and complexity and the bound of scenario number has been analyzed theoretically. To validate the effectiveness, it has been applied in the hardware-in-the-loop (HIL) test of a lane departure warning system (LDW). The results show that the proposed method can ensure required coverage with a significantly improved scenario complexity, and the generated test scenario can find system defects more efficiently.

Journal ArticleDOI
TL;DR: A nonlinear decreasing assignment method and sine function to improve the inertia weight and learning factor of PSO are introduced and the improved PSO algorithm is used to optimize the parameters of LSTM, for higher reliability.
Abstract: Nickel is a vital strategic metal resource with commodity and financial attributes simultaneously, whose price fluctuation will affect the decision-making of stakeholders. Therefore, an effective trend forecast of nickel price is of great reference for the risk management of the nickel market’s participants; yet, traditional forecast methods are defective in prediction accuracy and applicability. Therefore, a prediction model of nickel metal price is proposed based on improved particle swarm optimization algorithm (PSO) combined with long-short-term memory (LSTM) neural networks, for higher reliability. This article introduces a nonlinear decreasing assignment method and sine function to improve the inertia weight and learning factor of PSO, respectively, and then uses the improved PSO algorithm to optimize the parameters of LSTM. Nickel metal’s closing prices in London Metal Exchange are sampled for empirical analysis, and the improved PSO-LSTM model is compared with the conventional LSTM and the integrated moving average autoregressive model (ARIMA). The results show that compared with the standard PSO, the improved PSO has a faster convergence rate and can improve the prediction accuracy of the LSTM model effectively. In addition, compared with the conventional LSTM model and the integrated moving average autoregressive (ARIMA) model, the prediction error of the LSTM model optimized by the improved PSO is reduced by 9% and 13%, respectively, which has high reliability and can provide valuable guidance for relevant managers.

Journal ArticleDOI
TL;DR: In this article, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms.
Abstract: In this study, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms. By utilizing the strength of similarity transforms the governing PDEs are transformed into set of ODEs. The resulting equations are handled by using a proficient numerical scheme known as the shooting technique. Authenticity of numerical outcomes is established by comparing the achieved results with the MATLAB built-in solver bvp4c. The numerical outcomes for the reduced Nusselt number and Sherwood number are exhibited in the tabular form, while the variations of some crucial physical parameters on the velocity, temperature, and concentration profiles are demonstrated graphically. It is observed that Local Nusselt number rises with the enhancement in the magnetic field parameter, the porous media parameter, and the chemical reactions, while magnetic field parameter along with porous media parameter retards the velocity profile.

Journal ArticleDOI
TL;DR: The highlight of this paper is that the regeneration braking of BEV is considered in the car-following process, and the proposed adaptive cruise control strategy can make ACC more widely used in BEVs.
Abstract: This paper studies the control strategy for adaptive cruise control (ACC) system on a battery electric vehicle (BEV) in the car-following process, and the highlight of this paper is that the regeneration braking of BEV is considered in the car-following process. The hierarchical control structure is adopted for the ACC system. And the structure contains an upper controller and a lower controller. In the upper controller, multiple objectives including the safety, tracking, comfort, and energy consumption are optimized by using the model predictive control (MPC) method. In the lower controller, the energy is recovered during braking. So the energy economy is improved by reducing energy consumption and increasing energy recovery. The proposed ACC strategy is evaluated in simulation experiment. In the simulation experiment, safe tracking for the front vehicle is guaranteed, and the comfort and the energy economy are improved greatly. So the proposed adaptive cruise control strategy can make ACC more widely used in BEVs.

Journal ArticleDOI
Kai Wang1, Liwei Li1, Lan Yong1, Peng Dong1, Guoting Xia1 
TL;DR: In this article, chaotic carrier frequency modulation (CCFMT) was applied in two-stage matrix converter (TSMC) for the first time to spread sideband range and suppress harmonic peak value.
Abstract: The harmonics of line to line voltage in two-stage matrix converter (TSMC) with fixed carrier frequency had discrete and high values and produced powerful electromagnetic interference (EMI). In this paper, chaotic carrier frequency modulation technique (CCFMT) was applied in TSMC for the first time to spread sideband range and suppress harmonic peak value. Although this technique could suppress EMI, it would increase the probability of narrow pulses. In order to improve reliability, the rectifier in the two-stage matrix converter uses PWM modulation with zero vector to extend the zero current commutation time, solves the narrow pulse problem, and simplifies the commutation process. At last, an experiment platform was designed and experimental results showed that harmonics of line to line voltage was efficiently suppressed.