scispace - formally typeset
Open AccessJournal ArticleDOI

Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies.

TLDR
This work investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails.
Abstract
Antibodies targeting the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present a promising approach to combat the coronavirus disease 2019 (COVID-19) pandemic; however, concerns remain that mutations can yield antibody resistance. We investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared after in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Escape mutants were not generated after treatment with a noncompeting antibody cocktail.

read more

Citations
More filters
Posted ContentDOI

Persistent SARS-CoV-2 PCR positivity despite treatment in immunodeficient patients

TL;DR: In this paper , the authors studied the effect of anti-SARS-CoV-2 medicines in immunocompetent hosts, and showed that anti-sars-coV2 medicines can achieve sustained viral clearance in immunodeficient patients.
Journal ArticleDOI

Novel ACE2 fusion protein with adapting activity against SARS-CoV-2 variants in vitro

TL;DR: In this article , an optimized ACE2 fusion protein, designated ACE2-M, which comprises a human IgG1 Fc domain with abrogated Fc-receptor binding linked to a catalytically-inactive ACE2 extracellular domain was proposed.
Journal ArticleDOI

Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models.

TL;DR: In this paper , three alpacas-derived nanobodies (Nbs) with neutralizing activity from twenty RBD-specific Nbs were fused with the Fc domain of human IgG, which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD.
Journal ArticleDOI

Clinical study to compare the efficacy and safety of casirivimab & imdevimab, remdesivir, and favipravir in hospitalized COVID-19 patients

TL;DR: In this article , the authors compared the efficacy and safety of the antibodies cocktail (casirivimab and imdevimab), Remdesivir, and Favipravir in COVID-19 patients.
References
More filters
Journal ArticleDOI

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.

TL;DR: Cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein of SARS-CoV-2 are presented, providing important insights into the molecular basis for coronavirus recognition and infection.
Journal ArticleDOI

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.

TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.
Journal ArticleDOI

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

TL;DR: Several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which was identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS- coV) in 2003, and one antibody (named S309) potently neutralization, which may limit the emergence of neutralization-escape mutants.
Related Papers (5)