scispace - formally typeset
Open AccessJournal ArticleDOI

Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies.

TLDR
This work investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails.
Abstract
Antibodies targeting the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present a promising approach to combat the coronavirus disease 2019 (COVID-19) pandemic; however, concerns remain that mutations can yield antibody resistance. We investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared after in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Escape mutants were not generated after treatment with a noncompeting antibody cocktail.

read more

Citations
More filters
Journal ArticleDOI

Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane

TL;DR: In this article , the intact post-fusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction was analyzed and the structure provided structural definition of the functionally critical membraneinteracting segments, including the fusion peptide and trans-brane anchor.
Journal ArticleDOI

Impact of Casirivimab-Imdevimab on Severe Acute Respiratory Syndrome Coronavirus 2 Delta Variant Nasopharyngeal Virus Load and Spike Quasispecies

TL;DR: Casirivimab-Imdevimab is an effective treatment for patients infected with the SARS-CoV-2 delta variant and no key mutations that reduced mAb activity in the authors' patients are detected.
Journal ArticleDOI

Molecular and Epidemiological Characterization of Emerging Immune-Escape Variants of SARS-CoV-2

TL;DR: The findings demonstrate the differential neutralization efficacy of the COVID-19 vaccine and monoclonal antibodies against circulating variants, suggesting the need for pandemic alerts and booster vaccinations against the currently prevalent variants.
Posted ContentDOI

Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2

TL;DR: In this paper, a convolutional neural network was trained on protein sequence mutations in SARS-CoV-2's spike receptor binding domain and the human ACE2 zinc-binding peptidase domain to predict binding affinity and protein expression.
Journal ArticleDOI

Spontaneous Lower Gastrointestinal Bleeding Following Casirivimab/Imdevimab Treatment for COVID-19 Infection: A Case Presentation and Short Literature Review

TL;DR: The first case of life-threatening lower gastrointestinal bleeding potentially related to REGNCOV2 treatment is presented, and the efficacy and safety of mAbs are well documented.
References
More filters
Journal ArticleDOI

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.

TL;DR: Cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein of SARS-CoV-2 are presented, providing important insights into the molecular basis for coronavirus recognition and infection.
Journal ArticleDOI

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.

TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.
Journal ArticleDOI

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

TL;DR: Several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which was identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS- coV) in 2003, and one antibody (named S309) potently neutralization, which may limit the emergence of neutralization-escape mutants.
Related Papers (5)