scispace - formally typeset
Open AccessJournal ArticleDOI

Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies.

TLDR
This work investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails.
Abstract
Antibodies targeting the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present a promising approach to combat the coronavirus disease 2019 (COVID-19) pandemic; however, concerns remain that mutations can yield antibody resistance. We investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared after in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Escape mutants were not generated after treatment with a noncompeting antibody cocktail.

read more

Citations
More filters
Journal ArticleDOI

Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization

TL;DR: Wang et al. as discussed by the authors performed scRNA/V(D)J-seq on peripheral blood mononuclear cells from four COVID-19 vaccine trial participants longitudinally during immunization, revealing enhanced cellular immunity with concerted and cell type-specific IFN responses as well as boosted humoral immunity with SARS-CoV-2-specific antibodies.
Posted ContentDOI

One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening

TL;DR: In this paper, a facile method to identify antibody escape mutants on SARS-CoV-2 S RBD was presented, which predominantly mapped to the periphery of the ACE2 recognition site with K417, D420, Y421, F486, and Q493 as notable hotspots.
Journal ArticleDOI

Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2.

TL;DR: In this article, a bispecific antibody that combines both neutralizing and nonneutralizing epitopes on Spike-RBD is a promising and rapid engineering strategy to improve the potency of SARS-CoV-2 antibodies.
References
More filters
Journal ArticleDOI

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.

TL;DR: Cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein of SARS-CoV-2 are presented, providing important insights into the molecular basis for coronavirus recognition and infection.
Journal ArticleDOI

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.

TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.
Journal ArticleDOI

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

TL;DR: Several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which was identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS- coV) in 2003, and one antibody (named S309) potently neutralization, which may limit the emergence of neutralization-escape mutants.
Related Papers (5)