scispace - formally typeset
Open AccessJournal ArticleDOI

Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies.

TLDR
This work investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails.
Abstract
Antibodies targeting the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present a promising approach to combat the coronavirus disease 2019 (COVID-19) pandemic; however, concerns remain that mutations can yield antibody resistance. We investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared after in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Escape mutants were not generated after treatment with a noncompeting antibody cocktail.

read more

Citations
More filters
Journal ArticleDOI

Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For.

TL;DR: In this article, the authors discuss the issues related to disseminating accurate information, physicians, health professionals, and scientists play a key role in addressing myths and anxiety, help public health officials enact measures to decrease infections, and provide the best care for those who become sick.
Journal ArticleDOI

Neutralizing antibodies against SARS-CoV-2: current understanding, challenge and perspective

TL;DR: In this article, the authors provide a systemic overview of SARS-CoV-2 specific or cross-reactive neutralizing antibodies and discuss their structures, functions and neutralization mechanisms.
Posted ContentDOI

SARS-CoV-2 Omicron spike H655Y mutation is responsible for enhancement of the endosomal entry pathway and reduction of cell surface entry pathways

TL;DR: Protease inhibitors are used to block each viral entry pathway mediated by the three host proteases (cathepsin B/L, TMPRSS2, and metalloproteinases) in various cell types to suggest that Omicron has altered entry properties and fusogenicity, leading to modulations of tissue and cell tropism, and reduced pathogenicity.
Journal ArticleDOI

Clinical Management of COVID-19: A Review of Pharmacological Treatment Options

TL;DR: An updated review of pharmacological agents that have been developed and/or repurposed for the treatment of COVID-19 is provided, showing mixed data on efficacy and safety of the currently utilized drugs.
References
More filters
Journal ArticleDOI

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.

TL;DR: Cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein of SARS-CoV-2 are presented, providing important insights into the molecular basis for coronavirus recognition and infection.
Journal ArticleDOI

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.

TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.
Journal ArticleDOI

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

TL;DR: Several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which was identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS- coV) in 2003, and one antibody (named S309) potently neutralization, which may limit the emergence of neutralization-escape mutants.
Related Papers (5)