scispace - formally typeset
Open AccessJournal ArticleDOI

Catenary optics for achromatic generation of perfect optical angular momentum

TLDR
It is shown that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology.
Abstract
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A broadband achromatic metalens for focusing and imaging in the visible.

TL;DR: It is shown that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth.
Journal ArticleDOI

A broadband achromatic metalens in the visible

TL;DR: Integrating the Pancharatnam–Berry phase with integrated resonant nanoantennas in a metalens design produces an achromatic device capable of full-colour imaging in the visible range in transmission mode.
Journal ArticleDOI

Broadband achromatic optical metasurface devices

TL;DR: A design principle is proposed to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme.
Journal ArticleDOI

Multicolor 3D meta-holography by broadband plasmonic modulation

TL;DR: In this paper, an off-axis illumination method was developed to overcome the cross-talk limitation and achieve multicolor meta-holography with a single type of plasmonic pixel.
References
More filters
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Journal ArticleDOI

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

TL;DR: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum and an astigmatic optical system may be used to transform a high-order LaguERre- Gaussian mode into aHigh-order Hermite-Gaussia mode reversibly.
Journal ArticleDOI

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Journal ArticleDOI

Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers

TL;DR: The viability of using the orbital angular momentum (OAM) of light to create orthogonal, spatially distinct streams of data-transmitting channels that are multiplexed in a single fiber is demonstrated and suggest that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks.
Journal ArticleDOI

Gold Helix Photonic Metamaterial as Broadband Circular Polarizer

TL;DR: This work investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice that is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.
Related Papers (5)
Trending Questions (1)
Who invented catenary optics?

The paper does not mention who invented catenary optics. The paper discusses the use of catenary structures in optics to generate continuous and linear phase shifts.