scispace - formally typeset
Journal ArticleDOI

Deep learning

TLDR
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

read more

Citations
More filters
Journal ArticleDOI

Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey

TL;DR: This article reviews the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification, and answers the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures.
Journal ArticleDOI

Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders

TL;DR: The ability of the method to significantly outperform even the optimal linear-subspace ROM on benchmark advection-dominated problems is demonstrated, thereby demonstrating the method's ability to overcome the intrinsic $n$-width limitations of linear subspaces.
Proceedings ArticleDOI

End-to-end encrypted traffic classification with one-dimensional convolution neural networks

TL;DR: Among all of the four experiments, with the best traffic representation and the fine-tuned model, 11 of 12 evaluation metrics of the experiment results outperform the state-of-the-art method, which indicates the effectiveness of the proposed method.
Posted Content

An open access repository of images on plant health to enable the development of mobile disease diagnostics

TL;DR: These data are the beginning of an on-going, crowdsourcing effort to enable computer vision approaches to help solve the problem of yield losses in crop plants due to infectious diseases.
Journal ArticleDOI

Understanding deep convolutional networks.

TL;DR: Deep convolutional networks provide state-of-the-art classifications and regressions results over many high-dimensional problems and a mathematical framework is introduced to analyse their properties.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Related Papers (5)