scispace - formally typeset
Journal ArticleDOI

Deep learning

TLDR
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

read more

Citations
More filters
Journal ArticleDOI

Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing

TL;DR: A comprehensive survey of the recent research efforts on edge intelligence can be found in this paper, where the authors review the background and motivation for AI running at the network edge and provide an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning model toward training/inference at the edge.
Journal ArticleDOI

Neuroscience-Inspired Artificial Intelligence.

TL;DR: It is argued that better understanding biological brains could play a vital role in building intelligent machines in humans and other animals.
Journal ArticleDOI

Deep Learning in Mobile and Wireless Networking: A Survey

TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Journal ArticleDOI

Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning

TL;DR: In this paper, the authors identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks, which results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters.
Journal ArticleDOI

Barren Plateaus in Quantum Neural Network Training Landscapes

TL;DR: In this article, the authors show that for a wide class of reasonable parameterized quantum circuits, the probability that the gradient along any reasonable direction is non-zero to some fixed precision is exponentially small as a function of the number of qubits.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Related Papers (5)