scispace - formally typeset
Journal ArticleDOI

Deep learning

TLDR
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

read more

Citations
More filters
Proceedings ArticleDOI

EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks

TL;DR: A very large dataset for fine-grained emotions and deep learning models on it are built and a new state-of-the-art on 24 fine- grained types of emotions is achieved.
Journal ArticleDOI

Deep Learning in Chemistry.

TL;DR: This review aims to explain the concepts of deep learning to chemists from any background and follows this with an overview of the diverse applications demonstrated in the literature, in the hope that this will empower the broader chemical community to engage with this burgeoning field and foster the growing movement ofdeep learning accelerated chemistry.
Proceedings ArticleDOI

DRISA: a DRAM-based Reconfigurable In-Situ Accelerator

TL;DR: DRISA, a DRAM-based Reconfigurable In-Situ Accelerator architecture, is proposed to provide both powerful computing capability and large memory capacity/bandwidth to address the memory wall problem in traditional von Neumann architecture.
Posted Content

Practical Block-wise Neural Network Architecture Generation

TL;DR: A block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy and offers tremendous reduction of the search space in designing networks which only spends 3 days with 32 GPUs.
Journal ArticleDOI

Using deep neural network with small dataset to predict material defects

TL;DR: This study attempted to predict solidification defects by DNN regression with a small dataset that contains 487 data points and found that a pre-trained and fine-tuned DNN shows better generalization performance over shallow neural network, support vector machine, and DNN trained by conventional methods.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Related Papers (5)