scispace - formally typeset
Open AccessJournal ArticleDOI

FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies

Tanja Magoc, +1 more
- 01 Nov 2011 - 
- Vol. 27, Iss: 21, pp 2957-2963
TLDR
FLASH is a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short and when FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds.
Abstract
Motivation: Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. Results: We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. Availability and Implementation: The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. Contact: moc.liamg@cogam.t

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community.

TL;DR: Investigating the spatio-temporal variation and the co-occurrence patterns of microbial communities in the anthropogenically impacted Jiulong River in China showed that a hitherto unrecognized disruptive effect of PPCPs on the abundance variations of central species and module communities was stronger than the influence of physicochemical factors, suggesting the key role played by micropollutants for the microbial co- Occurrence relationships in lotic ecosystems.
Journal ArticleDOI

Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis

TL;DR: The first genome-wide analysis of these two Nicotiana species, N. sylvestris and N. tomentosiformis, reports a significant contribution to the SOL100 initiative because they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve the understanding of plant metabolism and evolution.
Journal ArticleDOI

Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

TL;DR: Evidence is provided that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes.
References
More filters
Journal ArticleDOI

The Sequence Alignment/Map format and SAMtools

TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

Versatile and open software for comparing large genomes

TL;DR: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes.
Journal ArticleDOI

De novo assembly of human genomes with massively parallel short read sequencing

TL;DR: The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Journal ArticleDOI

High-quality draft assemblies of mammalian genomes from massively parallel sequence data

TL;DR: The development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform, have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome.
Related Papers (5)