scispace - formally typeset
Open AccessJournal ArticleDOI

FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies

Tanja Magoc, +1 more
- 01 Nov 2011 - 
- Vol. 27, Iss: 21, pp 2957-2963
TLDR
FLASH is a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short and when FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds.
Abstract
Motivation: Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. Results: We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. Availability and Implementation: The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. Contact: moc.liamg@cogam.t

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil

TL;DR: In this paper, a 4-year controlled field experiment was conducted to quantify the respective and combined effects of chemical N fertilisation and winter cover crops on plant productivity, organic carbon (C) and N inputs from crop residues and cover crops, changes in soil C and N concentrations, C:N ratio, soil mineral N, pH, soil moisture and soil bacterial biodiversity.
Journal ArticleDOI

Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

TL;DR: Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites in solid-state acetic acid fermentation.
Journal ArticleDOI

Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific

TL;DR: Assessing those members of the protistan community contributing to biogeochemical cycling (active organisms) using the ratio of cDNA to 18S rRNA gene sequences within major protistan taxonomic groups sheds new light on the relative metabolic activity of specific protistan groups and how microbial communities respond to changing environmental conditions.
Journal ArticleDOI

Contrasting Patterns of Genome-Level Diversity Across Distinct Co-Occurring Bacterial Populations

TL;DR: Examining population-level heterogeneity within abundant and ubiquitous freshwater bacterial groups such as the acI Actinobacteria and LD12 Alphaproteobacteria using 33 single-cell genomes and a 5-year metagenomic time series suggests that within one lake, some freshwater lineages harbor genetically discrete and ecologically distinct populations, while other lineages are composed of less differentiated populations with overlapping niches.
References
More filters
Journal ArticleDOI

The Sequence Alignment/Map format and SAMtools

TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

Versatile and open software for comparing large genomes

TL;DR: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes.
Journal ArticleDOI

De novo assembly of human genomes with massively parallel short read sequencing

TL;DR: The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Journal ArticleDOI

High-quality draft assemblies of mammalian genomes from massively parallel sequence data

TL;DR: The development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform, have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome.
Related Papers (5)