scispace - formally typeset
Open AccessJournal ArticleDOI

Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations

TLDR
The Hamburg ocean carbon cycle model (HAMOCC) as discussed by the authors is a component of the Max Planck Institute for Meteorology Earth system model (MPI-ESM) and was used in the Coupled Model Intercomparison Project (CMIP5) experiments which project future climate change caused by anthropogenic emissions of greenhouse gases.
Abstract
[1] Ocean biogeochemistry is a novel standard component of fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments which project future climate change caused by anthropogenic emissions of greenhouse gases. Of particular interest here is the evolution of the oceanic sink of carbon and the oceanic contribution to the climate-carbon cycle feedback loop. The Hamburg ocean carbon cycle model (HAMOCC), a component of the Max Planck Institute for Meteorology Earth system model (MPI-ESM), is employed to address these challenges. In this paper we describe the version of HAMOCC used in the CMIP5 experiments (HAMOCC 5.2) and its implementation in the MPI-ESM to provide a documentation and basis for future CMIP5-related studies. Modeled present day distributions of biogeochemical variables calculated in two different horizontal resolutions compare fairly well with observations. Statistical metrics indicate that the model performs better at the ocean surface and worse in the ocean interior. There is a tendency for improvements in the higher resolution model configuration in representing deeper ocean variables; however, there is little to no improvement at the ocean surface. An experiment with interactive carbon cycle driven by emissions of CO2 produces a 25% higher variability in the oceanic carbon uptake over the historical period than the same model forced by prescribed atmospheric CO2 concentrations. Furthermore, a climate warming of 3.5 K projected at atmospheric CO2 concentration of four times the preindustrial value, reduced the atmosphere-ocean CO2 flux by 1 GtC yr−1. Overall, the model shows consistent results in different configurations, being suitable for the type of simulations required within the CMIP5 experimental design.

read more

Citations
More filters
Journal ArticleDOI

Global Carbon Budget 2020

Pierre Friedlingstein, +95 more
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Journal ArticleDOI

Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks

TL;DR: In this article, the authors analyzed the climate projections of 11 earth system models that performed both emission-driven and concentration-driven RCP8.5 simulations and found that seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m−2) when driven by CO2 emissions than for the concentration driven scenarios.
Journal ArticleDOI

Global Carbon Budget 2017

Corinne Le Quéré, +86 more
TL;DR: In this paper, the authors quantify the five major components of the global carbon budget and their uncertainties, and the resulting carbon budget imbalance (BIM) is a measure of imperfect data and understanding of the contemporary carbon cycle.
References
More filters
Journal ArticleDOI

An Overview of CMIP5 and the Experiment Design

TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Journal ArticleDOI

Summarizing multiple aspects of model performance in a single diagram

TL;DR: In this article, a diagram has been devised that can provide a concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference, and the ratio of their variances.
Journal ArticleDOI

Relationship between wind speed and gas exchange over the ocean

TL;DR: In this paper, the influence of variability in wind speed on the calculated gas transfer velocities and the possibility of chemical enhancement of CO2 exchange at low wind speeds over the ocean is illustrated using a quadratic dependence of gas exchange on wind speed.
Related Papers (5)