scispace - formally typeset
Journal ArticleDOI

ICRP PUBLICATION 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context

Reads0
Chats0
TLDR
Estimates of ‘practical’ threshold doses for tissue injury defined at the level of 1% incidence are provided and it appears that the rate of dose delivery does not modify the low incidence for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease.
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.

read more

Citations
More filters
Journal ArticleDOI

Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke

TL;DR: Multiphase CT angiography is a reliable tool for imaging selection in patients with acute ischemic stroke and its interrater reliability and ability to help determine clinical outcome are demonstrated.
Journal ArticleDOI

Report to the General Assembly

Journal ArticleDOI

Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures

TL;DR: This position paper wants to offer some very practical advice on how to reduce exposure to patients and staff, and describes how customization of the X-ray system, workflow adaptations, and shielding measures can be implemented in the cath lab.
Journal ArticleDOI

Space radiation risks to the central nervous system

TL;DR: Recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models are summarized, and a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission is made.
References
More filters
Journal ArticleDOI

Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism.

TL;DR: Testing the role of intercellular adhesion molecule-1 (ICAM-1) and endothelial nitric oxide synthase (eNOS) in the selective neuronal loss that begins in the submedial thalamic nucleus of mice demonstrated that in TD, an ICAM- 1-dependent pathway of eNOS induction leads to oxidative stress-mediated death of metabolically compromised neurons.
Journal ArticleDOI

Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: a controlled trial in a male nonhuman primate (Macaca fascicularis).

TL;DR: In clear contrast to rodent studies, GnRH antagonist treatment did not provide gonadal protection in this primate model and FSH treatment resulted in slightly better recovery of spermatogenesis, which appears to be of no or only little clinical relevance.
Journal ArticleDOI

Effect of Continuous Irradiation with a Very Low Dose of Gamma Rays on Life Span and the Immune System in SJL Mice Prone to B-Cell Lymphoma

TL;DR: It is reported here that continuous exposure to a low dose of γ rays influences the course of spontaneous B-cell lymphoma in SJL mice and provides further support for the absence of harmful effects of a continuous very low doses of radiation.
Journal ArticleDOI

WR-2721 protection of pneumonitis and fibrosis in mouse lung after single doses of x rays.

TL;DR: WR-2721 protects against chronic lung fibrosis caused by radiation at least as well as against the earlier appearing pneumonitis after single doses of radiation, which means that a therapeutic benefit would be obtained by the use of this drug in clinical radiotherapy.
Journal ArticleDOI

Progressive development of radiation damage in mouse kidneys and the consequences for reirradiation tolerance.

TL;DR: It was concluded from these studies that no additional dose-sparing (tissue recovery) took place in the kidneys during a 6-month interval, even when the initial radiation dose alone was insufficient to cause measurable renal dysfunction.
Related Papers (5)