scispace - formally typeset
Journal ArticleDOI

ICRP PUBLICATION 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context

Reads0
Chats0
TLDR
Estimates of ‘practical’ threshold doses for tissue injury defined at the level of 1% incidence are provided and it appears that the rate of dose delivery does not modify the low incidence for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease.
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.

read more

Citations
More filters
Journal ArticleDOI

Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke

TL;DR: Multiphase CT angiography is a reliable tool for imaging selection in patients with acute ischemic stroke and its interrater reliability and ability to help determine clinical outcome are demonstrated.
Journal ArticleDOI

Report to the General Assembly

Journal ArticleDOI

Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures

TL;DR: This position paper wants to offer some very practical advice on how to reduce exposure to patients and staff, and describes how customization of the X-ray system, workflow adaptations, and shielding measures can be implemented in the cath lab.
Journal ArticleDOI

Space radiation risks to the central nervous system

TL;DR: Recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models are summarized, and a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission is made.
References
More filters
Journal ArticleDOI

Cataract in atomic bomb survivors

TL;DR: Ophthalmologic examinations were conducted on atomic bomb survivors 55 years after exposure and significant radiation effects were observed in two types of cataracts in A‐bomb survivors.
Journal ArticleDOI

Dose-volumetric Parameters for Predicting Severe Radiation Pneumonitis after Three-dimensional Conformal Radiation Therapy for Lung Cancer

TL;DR: MLD is a useful indicator of risk for development of severe RP after 3D conformal radiation therapy in patients with lung cancer and is associated with severe RP in multivariate analysis.
Journal ArticleDOI

Late reproductive sequelae following treatment of childhood cancer andoptions for fertility preservation

TL;DR: In this chapter, the late reproductive sequelae following treatment for childhood cancer and options for fertility preservation are considered.
Journal ArticleDOI

Radiation myelopathy following single courses of radiotherapy and retreatment

TL;DR: The risk of radiation myelopathy following conventionally fractionated radiotherapy to the spinal cord is extremely small; giving multiple fractions per day reduces the spinal Cord tolerance; latent time to myelopathic decreases following retreatment; and there is possible long-term recovery of radiation damage in the human spinal cord.
Journal ArticleDOI

Cardiac complications of radiation therapy

TL;DR: Much of the evidence relates to the use of outdated radiation therapy equipment and techniques, and today's patients almost certainly have a lower risk of cardiac complications.
Related Papers (5)