scispace - formally typeset
Open AccessJournal ArticleDOI

Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures.

TLDR
Applied aspects that arise from an increase in knowledge in this area are described, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.

read more

Citations
More filters
Journal ArticleDOI

Interferon-stimulated genes and their antiviral effector functions.

TL;DR: Some of the most potent antiviral effectors reinforce the system by further inducing IFN or ISGs, suggesting that some viruses may have evolved to co-opt IFN effectors for a survival advantage.
Journal ArticleDOI

The multifunctional NS1 protein of influenza A viruses.

TL;DR: The basic biochemistry of NS1 is summarized, in particular its synthesis, structure, and intracellular localization, and the various roles NS1 has in regulating viral replication mechanisms, host innate/adaptive immune responses, and cellular signalling pathways are discussed.
Journal ArticleDOI

Creating a False Memory in the Hippocampus

TL;DR: The data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means through reactivation of memory engram–bearing cells in the hippocampus.
Journal ArticleDOI

Regulatory evolution of innate immunity through co-option of endogenous retroviruses

TL;DR: It is found that ERVs have shaped the evolution of a transcriptional network underlying the interferon (IFN) response, a major branch of innate immunity, and that lineage-specific ERV have dispersed numerous IFN-inducible enhancers independently in diverse mammalian genomes.
References
More filters
Journal ArticleDOI

Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.

TL;DR: It is shown that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-κB and the production of type I interferons (IFNs).
Journal ArticleDOI

Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8

TL;DR: It is shown that guanosine (G)- and uridine (U)-rich ssRNA oligonucleotides derived from human immunodeficiency virus–1 (HIV-1) stimulate dendritic cells and macrophages to secrete interferon-α and proinflammatory, as well as regulatory, cytokines, and these data suggest that ssRNA represents a physiological ligand for TLR7 and TLR8.
Journal ArticleDOI

Signaling to NF-kappaB.

TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Journal ArticleDOI

The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.

TL;DR: In this article, the authors identify retinoic acid inducible gene I (RIG-I), which encodes a DExD/H box RNA helicase that contains a caspase recruitment domain, as an essential regulator for dsRNA-induced signaling.
Journal ArticleDOI

NF-kappaB regulation in the immune system.

TL;DR: The role of NF-κB proteins as potential therapeutic targets in clinical applications and their role in the immune system and inflammatory diseases are discussed.
Related Papers (5)