scispace - formally typeset
Open AccessJournal ArticleDOI

Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii.

Daniel E. Voth, +1 more
- 01 Apr 2007 - 
- Vol. 9, Iss: 4, pp 829-840
Reads0
Chats0
TLDR
Current understanding of the cellular events that occur during parasitism of host cells by Coxiella, including deployment of a type IV secretion system to deliver effector proteins to the host cytosol is summarized.
Abstract
Summary Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not the case of the Q fever bacterium, Coxiella burnetii. This hardy, obligate intracellular pathogen has evolved to not only survive, but to thrive, in the harshest of intracellular compartments: the phagolysosome. Following internalization, the nascent Coxiella phagosome ultimately develops into a large and spacious parasitophorous vacuole (PV) that acquires lysosomal characteristics such as acidic pH, acid hydrolases and cationic peptides, defences designed to rid the host of intruders. However, transit of Coxiella to this environment is initially stalled, a process that is apparently modulated by interactions with the autophagic pathway. Coxiella actively participates in biogenesis of its PV by synthesizing proteins that mediate phagosome stalling, autophagic interactions, and development and maintenance of the mature vacuole. Among the potential mechanisms mediating these processes is deployment of a type IV secretion system to deliver effector proteins to the host cytosol. Here we summarize our current understanding of the cellular events that occur during parasitism of host cells by Coxiella.

read more

Citations
More filters
Journal ArticleDOI

Processing by rhomboid protease is required for Providencia stuartii TatA to interact with TatC and to form functional homo-oligomeric complexes

TL;DR: The results suggest that the P.’stuartii TatA pro‐protein is inactive because it is unable to interact with TatC and cannot form the large TatA complexes required for transport.
Journal ArticleDOI

Low phosphate represses histone deacetylase complex1 to regulate root system architecture remodeling in Arabidopsis.

TL;DR: A chromatin-level control of Pi starvation responses in which HDC1-mediated histone H3 deacetylation represses the transcriptional activation of genes involved in RSA remodeling in Arabidopsis is suggested.
Journal ArticleDOI

Distribution of Allergen Composition in Peanut (Arachis hypogaea L.) and Wild Progenitor (Arachis) Species

TL;DR: The results indicate that eliminating all of the major allergens to create a hypoallergenic peanut is limited with the peanut germpfasm currently available and would benefit from reverse genetic approaches.
Journal ArticleDOI

The rise and fall of major royal jelly proteins during a honeybee ( Apis mellifera) workers' life

TL;DR: It is shown, using combined quantitative real‐time PCR with quantitative mass spectrometry, that expression and protein amount of mrJP1‐5 and mrjp7 show an age‐dependent pattern in worker's hypopharyngeal glands as well as in brains, albeit lower relative abundance in brains than in glands.
Journal ArticleDOI

Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology.

TL;DR: The authors' analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide—a virulence factor, and of critical metabolites such as fatty acids and biotin.
References
More filters
Journal ArticleDOI

Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.

TL;DR: It is demonstrated that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis, which is a hormonally, developmentally, and immunologically regulated process, represents an underapp appreciated innate defense mechanism for control of intracellular pathogens.
Journal ArticleDOI

Conjugative Transfer by the Virulence System of Legionella pneumophila

TL;DR: In this paper, a large number of mutants called dot that were unable to replicate intracellularly because of an inability of the bacteria to alter the endocytic pathway of macrophages were isolated.
Journal ArticleDOI

Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited.

TL;DR: Findings suggest that M. tuberculosis retards the maturation of its phagosome along the endosomal-lysosomal pathway and resides in a compartment with endosome, as opposed to lysosomal, characteristics; and the intraphagosomal pathway, i.e., the pathway followed by several intracellular parasites that inhibit phagosomes-lysOSome fusion, is heterogeneous.
Journal ArticleDOI

Phagosome maturation: aging gracefully.

TL;DR: The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Journal ArticleDOI

A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.

TL;DR: It is shown that L. pneumophilaproduce a protein called RalF that functions as an exchange factor for the ADP ribosylation factor (ARF) family of guanosine triphosphatases (GTPases) and is a substrate of the Dot/Icm secretion apparatus.
Related Papers (5)