scispace - formally typeset
Journal ArticleDOI

Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers

Reads0
Chats0
TLDR
In this article, a type of thin-film transistor that uses aligned arrays of thin (submicron) ribbons of single-crystal silicon created by lithographic patterning and anisotropic etching of bulk silicon wafers was introduced.
Abstract
This letter introduces a type of thin-film transistor that uses aligned arrays of thin (submicron) ribbons of single-crystal silicon created by lithographic patterning and anisotropic etching of bulk silicon (111) wafers. Devices that incorporate such ribbons printed onto thin plastic substrates show good electrical properties and mechanical flexibility. Effective device mobilities, as evaluated in the linear regime, were as high as 360cm2V−1s−1, and on/off ratios were >103. These results may represent important steps toward a low-cost approach to large-area, high-performance, mechanically flexible electronic systems for structural health monitors, sensors, displays, and other applications.

read more

Citations
More filters
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Journal ArticleDOI

Stretchable and foldable silicon integrated circuits.

TL;DR: A simple approach to high-performance, stretchable, and foldable integrated circuits that integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates.
Journal ArticleDOI

Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review

TL;DR: In this article, a comprehensive review of various printing technologies, commonly used substrates and electronic materials is presented, including solution/dry printing and contact/noncontact printing technologies on the basis of technological, materials, and process-related developments in the field.
Journal ArticleDOI

Polymers for flexible displays: From material selection to device applications

TL;DR: In this paper, the kinds of polymers that are used, where and how polymer materials are used and the challenges to overcome in developing flexible displays are discussed and discussed in detail.
References
More filters
Journal ArticleDOI

The path to ubiquitous and low-cost organic electronic appliances on plastic

TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Book

Semiconductor Devices: Physics and Technology

S. M. Sze
TL;DR: In this paper, the transmission coefficient of a symmetric resonance tunneling diode has been derived for a Symmetric Resonant-Tunneling Diode, and it has been shown that it can be computed in terms of the Density of States in Semiconductor.
Book

Semiconductor devices

Kanaan Kano
Journal ArticleDOI

Directed Assembly of One-Dimensional Nanostructures into Functional Networks

TL;DR: It is shown that nanowires can be assembled into parallel arrays with control of the average separation and, by combining fluidic alignment with surface-patterning techniques, that it is also possible to control periodicity.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Related Papers (5)