scispace - formally typeset
Open AccessJournal ArticleDOI

Mu Opioids and Their Receptors: Evolution of a Concept

Reads0
Chats0
TLDR
Understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years, which now reveals a complexity of the morphine- like agents andtheir receptors that had not been previously appreciated.
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.

read more

Citations
More filters
Journal ArticleDOI

Structural insights into µ-opioid receptor activation

TL;DR: A 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment is reported, revealing an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.
Journal ArticleDOI

Opioid-induced hyperalgesia: Cellular and molecular mechanisms.

TL;DR: The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids, which contribute to OIH.
Journal ArticleDOI

Breaking barriers to novel analgesic drug development

TL;DR: Recent advances in the understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Journal ArticleDOI

Transition-Metal-Catalyzed Selective Functionalization of C(sp3 )-H Bonds in Natural Products.

TL;DR: Advances in the transition-metal-catalyzed functionalization of C(sp3 )-H bonds have allowed natural product derivatives to be created selectively and strategies to achieve such transformation are reviewed.
References
More filters
Journal ArticleDOI

On the central sites for the antinociceptive action of morphine and fentanyl

TL;DR: The inhibition by morphine and fentanyl of a nociceptive response, the licking reaction elicited by electrical stimulation of the tooth-pulp, was studied in rabbits and the most effective sites of the antinociception action of morphine-like substances were situated in the fossa rhomboides and structures near it.
Journal ArticleDOI

Opioid Receptors Undergo Axonal Flow

TL;DR: In examinations of the effect of ligation on the distribution of receptors in the vagus nerve by in vitro labeling light microscopic autoradiography, a large buildup of receptors was found proximal to the ligature, indicating an axonal flow of receptors.
Journal ArticleDOI

Potentiation of Opiate Analgesia and Apparent Reversal of Morphine Tolerance by Proglumide

TL;DR: Proglumide potentiated analgesia produced by morphine and endogenous opiates and seemed to reverse tolerance in rats, suggesting that endogenous cholecystokinin systems oppose the action of opiates.
Journal Article

Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms.

TL;DR: Comparisons of the analgesic and respiratory depressant effects of morphine and two opioid peptides, metkephamid and D-Ala2-D-Leu5-enkephalin, strongly suggest the involvement of mu-2 rather than delta mechanisms in opioid respiratory depression.
Related Papers (5)