scispace - formally typeset
Journal ArticleDOI

Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons

Reads0
Chats0
TLDR
Early larval HU application to P[GAL4] strains that label specific neuron types enabled us to identify the origins of the two major classes of interneurons in the olfactory system and suggested that differentiated RI are present at the larval stage already and may be retained through metamorphosis.
Abstract
Hydroxyurea (HU) treatment of early first instar larvae in Drosophila was previously shown to ablate a single dividing lateral neuroblast (LNb) in the brain. Early larval HU application to P[GAL4] strains that label specific neuron types enabled us to identify the origins of the two major classes of interneurons in the olfactory system. HU treatment resulted in the loss of antennal lobe local interneurons and of a subset of relay interneurons (RI), elements usually projecting to the calyx and the lateral protocerebrum (LPR). Other RI were resistant to HU and still projected to the LPR. However, they formed no collaterals in the calyx region (which was also ablated), suggesting that their survival does not depend on targets in the calyx. Hence, the ablated interneurons were derived from the LNb, whereas the HU-resistant elements originated from neuroblasts which begin to divide later in larval life. Developmental GAL4 expression patterns suggested that differentiated RI are present at the larval stage already and may be retained through metamorphosis.

read more

Citations
More filters

Odor Coding in Insects

TL;DR: In the fruit fly Drosophila melanogaster, the olfactory sensory neurons (OSNs) express odorant receptors (ORs) which are related to seven transmembrane G-protein-coupled receptors (GPCR) and transduce odorant binding to cellular excitation.
Journal ArticleDOI

Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner.

TL;DR: It is shown that autophagy-regulated signaling emanating from a higher brain integration center can execute high-level control over other brain regions to steer life-strategy decisions such as whether or not to form memories.
Journal ArticleDOI

Synapse Loss in Olfactory Local Interneurons Modifies Perception

TL;DR: It is demonstrated that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition, and modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses in five subsets of local interneurons of the Drosophila olfactory glomeruli.
Journal ArticleDOI

An olfactory circuit increases the fidelity of visual behavior

TL;DR: These results implicate the mushroom bodies of the fly brain in a fast-acting, memory-independent olfactory modification of a visual reflex that is critical for flight control, and genetically separate the yaw responses and sideslip responses in a tethered flight assay.
Journal ArticleDOI

Coupling of activity, metabolism and behaviour across the Drosophila brain

TL;DR: In this paper, two-photon microscopy of the fly brain with sensors that enable the simultaneous measurement of neural activity and metabolic flux, across both resting and active behavioural states, was used to demonstrate that neural activity drives changes in metabolic flux.
References
More filters
Journal ArticleDOI

Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.

TL;DR: The GAL4 system, a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns, has been designed and used to expand the domain of embryonic expression of the homeobox protein even-skipped.
Journal ArticleDOI

The Organization of the Chemosensory System in Drosophila Melanogaster: A Review

TL;DR: This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level.
Journal ArticleDOI

Detection in situ of genomic regulatory elements in Drosophila.

TL;DR: The P-lacZ fusion gene is an efficient tool for the recovery of elements that may regulate gene expression in Drosophila and for the generation of a wide variety of cell-type-specific markers.
Journal ArticleDOI

Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies

TL;DR: The results demonstrate that MBs mediate associative odor learning in flies, and that adult flies developing without MBs are unable to perform in a classical conditioning paradigm that tests associative learning of odor cues and electric shock.
Journal ArticleDOI

Drosophila Mushroom Body Mutants are Deficient in Olfactory Learning

TL;DR: Two Drosophila mutants are described in which the connections between the input to and the output from the mushroom bodies is largely interrupted, and the defect seems not to impair learning of color discrimination tasks or operant learning involving visual cues.
Related Papers (5)