scispace - formally typeset
Journal ArticleDOI

Predicting coiled coils from protein sequences

Andrei N. Lupas, +2 more
- 24 May 1991 - 
- Vol. 252, Iss: 5009, pp 1162-1164
Reads0
Chats0
TLDR
This method was used to delineate coiled-coil domains in otherwise globular proteins, such as the leucine zipper domains in transcriptional regulators, and to predict regions of discontinuity within coiled -coil structures,such as the hinge region in myosin.
Abstract
The probability that a residue in a protein is part of a coiled-coil structure was assessed by comparison of its flanking sequences with sequences of known coiled-coil proteins. This method was used to delineate coiled-coil domains in otherwise globular proteins, such as the leucine zipper domains in transcriptional regulators, and to predict regions of discontinuity within coiled-coil structures, such as the hinge region in myosin. More than 200 proteins that probably have coiled-coil domains were identified in GenBank, including alpha- and beta-tubulins, flagellins, G protein beta subunits, some bacterial transfer RNA synthetases, and members of the heat shock protein (Hsp70) family.

read more

Citations
More filters
Journal ArticleDOI

A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope.

TL;DR: In this article, a recombinant histidyl-tRNA synthetase was found to be enzymatically active and recognized by human autoantibodies in the baculovirus system, and the peptides from this region (amino acids 1-60 and 1-47) have the predicted high alpha-helical content, but smaller fragments (1-30, 14-45, and 31-60) do not.
Journal ArticleDOI

Characterization of Unconventional MYO6, the Human Homologue of the Gene Responsible for Deafness in Snell's Waltzer Mice

TL;DR: The cloning and characterization of the human unconventional myosin VI (locus designation, MYO6) cDNA is reported, which makes this gene an excellent candidate for a human deafness disorder.
Journal ArticleDOI

REPPER--repeats and their periodicities in fibrous proteins.

TL;DR: FTwin and REPwin are complemented by secondary structure prediction (PSIPRED) and coiled coil prediction (COILS), making the server a versatile analysis tool for sequences of fibrous proteins.
Journal ArticleDOI

LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans

TL;DR: The results show that LIN-5 is a novel component of the spindle apparatus required for chromosome and spindle movements, cytoplasmic cleavage, and correct alternation of the S and M phases of the cell cycle.
References
More filters
Journal ArticleDOI

The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins

TL;DR: A 30-amino-acid segment of C/EBP, a newly discovered enhancer binding protein, shares notable sequence similarity with a segment of the cellular Myc transforming protein, and may represent a characteristic property of a new category of DNA binding proteins.
Journal ArticleDOI

Evidence that the leucine zipper is a coiled coil

TL;DR: A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized and associates in the micromolar concentration range to form a very stable dimer of alpha helices with a parallel orientation.
Journal ArticleDOI

Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA.

TL;DR: The putative DNA-binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive c-jun protein and the yeast transcription factor GCN4.
Journal ArticleDOI

A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A.

TL;DR: The three-dimensional crystal structure of seryl-transfer RNA synthetase from Escherichia coli, refined at 2.5 Å resolution, is described, and is the first representative of a second class of aminoacyl-tRNA synthet enzyme structures.
Related Papers (5)