scispace - formally typeset
Journal ArticleDOI

Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals

Reads0
Chats0
TLDR
In this paper, the introduction of pyridine during the synthesis of methylammonium lead bromide (MAPbBr3) perovskite nanocrystals can transform threedimensional (3D) cubes into two-dimensional (2D) nanostructures.
Abstract
Engineering the surface energy through careful manipulation of the surface chemistry is a convenient approach to control quantum confinement and structure dimensionality during nanocrystal growth. Here, we demonstrate that the introduction of pyridine during the synthesis of methylammonium lead bromide (MAPbBr3) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially binds to Pb atoms terminating the surface, driving the selective 2D growth of the nanostructures. These 2D nanostructures exhibit strong quantum confinement effects, high photoluminescence quantum yields in the visible spectral range, and efficient charge transfer to molecular acceptors. These qualities indicate the suitability of the synthesized 2D nanostructures for a wide range of optoelectronic applications.

read more

Citations
More filters
Journal ArticleDOI

Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications and Their Optical Properties

TL;DR: In this paper, the authors provide an updated survey of the field of halide perovskite nanocomposite colloidal synthesis, with a main focus on their colloidal synthetic routes to control shape, size and optical properties of the resulting nano-crystals.
Journal ArticleDOI

Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties.

TL;DR: This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed and on the fundamental optical properties of halide perovskite nanocrystals.
Journal ArticleDOI

Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes.

TL;DR: The postsynthesis passivation process for CsPbI3 NCs is developed by using a bidentate ligand, namely 2,2'-iminodibenzoic acid, which enables the passivated NCs to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the nonpassivating NCs.
Journal ArticleDOI

State of the Art and Prospects for Halide Perovskite Nanocrystals.

Amrita Dey, +78 more
- 27 Jul 2021 - 
TL;DR: A comprehensive review of metal-halide perovskite nanocrystals can be found in this article, where researchers having expertise in different fields (chemistry, physics, and device engineering) have joined together to provide a state-of-the-art overview and future prospects of metalhalide nanocrystal research.
Journal ArticleDOI

Synthetic Approaches for Halide Perovskite Thin Films.

TL;DR: This comprehensive review explores how the unique chemistry of halide perovskites can be exploited to tailor film growth processes and highlights the connections between processing methods and the resulting film characteristics.
References
More filters
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Chemistry and properties of nanocrystals of different shapes.

TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Related Papers (5)