scispace - formally typeset
Open AccessJournal ArticleDOI

r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

Charles Horowitz, +64 more
- 12 Jul 2019 - 
- Vol. 46, Iss: 8, pp 083001
Reads0
Chats0
TLDR
In this article, a review paper was initiated at a three week International Collaborations in Nuclear Theory program in June 2016, where they explored promising r-process experiments and discussed their likely impact, and their astronomical, astrophysical, and nuclear theory context.
Abstract
This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to γ rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both electron neutrinos and antineutrinos from the next Galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally, FRIB and other rare-isotope beam facilities will soon have dramatic new capabilities to synthesize many neutron-rich nuclei that are involved in the r-process. The new capabilities can significantly improve our understanding of the r-process and likely resolve one of the main outstanding problems in classical nuclear astrophysics.
 
 However, to make best use of the new experimental capabilities and to fully interpret the results, a great deal of infrastructure is needed in many related areas of astronomy, astrophysics, and nuclear theory. We place these experiments in context by discussing astrophysical simulations and observations of r-process sites, observations of stellar abundances, Galactic chemical evolution, and nuclear theory for the structure and reactions of very neutron-rich nuclei. This review paper was initiated at a three week International Collaborations in Nuclear Theory program in June 2016, where we explored promising r-process experiments and discussed their likely impact, and their astronomical, astrophysical, and nuclear theory context.

read more

Citations
More filters
Journal ArticleDOI

Origin of the heaviest elements: The rapid neutron-capture process

TL;DR: In this article, the authors provide an answer to the question "How Were the Elements from Iron to Uranium Made?" (Abridged) by combining new results and important breakthroughs in the related nuclear, atomic and astronomical fields of science.
Journal ArticleDOI

The periodic table and the physics that drives it

TL;DR: The periodic table can be seen as a parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties as discussed by the authors, and the underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries.
RepositoryDOI

EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade

R. Alves Batista, +131 more
TL;DR: The European Consortium for Astroparticle Theory (EuCAPT) white paper as mentioned in this paper explores upcoming theoretical opportunities and challenges for our field of research with particular emphasis on the possible synergies among different subfields, and the prospects for solving the most fundamental open questions with multi-messenger observations.
References
More filters
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Journal ArticleDOI

Solar System Abundances and Condensation Temperatures of the Elements

TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Journal ArticleDOI

The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis

TL;DR: In this paper, the nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metals Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities).
Journal ArticleDOI

Synthesis of the Elements in Stars

TL;DR: In this article, a count of the stable and radioactive elements and isotopes is given, and Table I,1 shows that only promethium has not been found in nature, whereas 99 elements are found terrestrially and technetium is found in stars.
Journal ArticleDOI

Nuclear ground state masses and deformations

TL;DR: In this paper, the atomic mass excesses and nuclear ground-state deformations of 8979 nuclei ranging from 16O to A = 339 were tabulated based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model.
Related Papers (5)

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more

The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

Philip S. Cowperthwaite, +161 more