scispace - formally typeset
Open Access

Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire

Reads0
Chats0
TLDR
The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
Abstract
We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes,includingascalablefabricationprocess,morphologies,andoptical,mechanicaladhesion,andflexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long andthinwiresforimprovedperformanceintermsofsheetresistanceandopticaltransmittance.Twenty/sqand 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, whichfallinthesamerangeasthebestindiumtinoxide(ITO)samplesonplasticsubstratesforflexibleelectronics andsolarcells.TheAgNWelectrodesshowopticaltransparenciessuperiortoITOfornear-infraredwavelengths(2- foldhighertransmission).Owingtolightscatteringeffects,theAgNWnetworkhasthelargestdifferencebetween diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a propertywhichcouldgreatlyenhancesolarcellperformance.AmechanicalstudyshowsthatAgNWelectrodeson flexiblesubstratesshowexcellentrobustnesswhensubjectedtobending.Wealsostudytheelectricalconductance ofAgnanowiresandtheirjunctionsandreportafacileelectrochemicalmethodforaAucoatingtoreducethewire- to-wire junction resistance for better overallfilm conductance. Simple mechanical pressing was also found to increasetheNWfilmconductanceduetothereductionofjunctionresistance.Theoverallpropertiesoftransparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement forflexible electronics and solar cells.

read more

Citations
More filters
Journal ArticleDOI

Flexible Metal/Polymer Composite Films Embedded with Silver Nanowires as a Stretchable and Conductive Strain Sensor for Human Motion Monitoring

TL;DR: The strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth and indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads.
Journal ArticleDOI

Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

TL;DR: In this article, the authors demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance.
Journal ArticleDOI

A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion

TL;DR: In this paper, a centimeter-scale flexible conductive film was prepared by the oriented stacking of Ag nanoplates on a polyethylene glycol terephthalate (PET) flexible substrate and it displayed an ideal ohmic contact and low resistance.
Journal ArticleDOI

High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices.

TL;DR: A simple technique for high-resolution solution patterned AgNW networks, based on simple filtration of AgNW solution on a patterned polyimide (PI) shadow mask, which allows the smallest pattern size of Ag NW electrodes down to a width of 3.5 μm to be demonstrated.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Journal ArticleDOI

Plasmonics for improved photovoltaic devices

TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Related Papers (5)