scispace - formally typeset
Open Access

Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire

Reads0
Chats0
TLDR
The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
Abstract
We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes,includingascalablefabricationprocess,morphologies,andoptical,mechanicaladhesion,andflexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long andthinwiresforimprovedperformanceintermsofsheetresistanceandopticaltransmittance.Twenty/sqand 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, whichfallinthesamerangeasthebestindiumtinoxide(ITO)samplesonplasticsubstratesforflexibleelectronics andsolarcells.TheAgNWelectrodesshowopticaltransparenciessuperiortoITOfornear-infraredwavelengths(2- foldhighertransmission).Owingtolightscatteringeffects,theAgNWnetworkhasthelargestdifferencebetween diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a propertywhichcouldgreatlyenhancesolarcellperformance.AmechanicalstudyshowsthatAgNWelectrodeson flexiblesubstratesshowexcellentrobustnesswhensubjectedtobending.Wealsostudytheelectricalconductance ofAgnanowiresandtheirjunctionsandreportafacileelectrochemicalmethodforaAucoatingtoreducethewire- to-wire junction resistance for better overallfilm conductance. Simple mechanical pressing was also found to increasetheNWfilmconductanceduetothereductionofjunctionresistance.Theoverallpropertiesoftransparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement forflexible electronics and solar cells.

read more

Citations
More filters
Journal ArticleDOI

Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode

TL;DR: In this paper, a highly smooth, conductive and air-stable flexible transparent silver nanowire (AgNW) composite film is developed by solution process without high temperature treatment, and the sheet resistance of the AgNW/polyvinyl butyral (PVB) film decreases significantly after the film is immersed into the silverammonia and glucose mixed solution for only a few seconds.
Journal ArticleDOI

Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires.

TL;DR: It is demonstrated that the averaged resistivity of ITO nanowires can be decreased down to 2.1 × 10(-4) Ω cm, which is the lowest compared with values previously reported, via intentionally increasing the tin concentration within the Nanowires.
Journal ArticleDOI

Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater

TL;DR: In this paper, an overcoated silver nanowire flexible transparent electrodes (AgNW FTEs) with polymeric resins as an overlay layer were fabricated via successive Mayer rod method followed by UV light curing process, and the mechanical and chemical stabilities, electromagnetic interference shielding effectiveness (EMI SE) and film-heating property of the resultant over-coated AgNWFTEs were investigated.
Journal ArticleDOI

Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes.

TL;DR: By controlling the surface wetting properties of a polydimethylsiloxane (PDMS) release template, a multilayer patterning and transferring process can be realized, resulting in a fine-patterned, smooth, and uniform AgNWs mesh/poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PEDOT PSS) composite electrode.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Journal ArticleDOI

Plasmonics for improved photovoltaic devices

TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Related Papers (5)