scispace - formally typeset
Open Access

Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire

Reads0
Chats0
TLDR
The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
Abstract
We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes,includingascalablefabricationprocess,morphologies,andoptical,mechanicaladhesion,andflexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long andthinwiresforimprovedperformanceintermsofsheetresistanceandopticaltransmittance.Twenty/sqand 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, whichfallinthesamerangeasthebestindiumtinoxide(ITO)samplesonplasticsubstratesforflexibleelectronics andsolarcells.TheAgNWelectrodesshowopticaltransparenciessuperiortoITOfornear-infraredwavelengths(2- foldhighertransmission).Owingtolightscatteringeffects,theAgNWnetworkhasthelargestdifferencebetween diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a propertywhichcouldgreatlyenhancesolarcellperformance.AmechanicalstudyshowsthatAgNWelectrodeson flexiblesubstratesshowexcellentrobustnesswhensubjectedtobending.Wealsostudytheelectricalconductance ofAgnanowiresandtheirjunctionsandreportafacileelectrochemicalmethodforaAucoatingtoreducethewire- to-wire junction resistance for better overallfilm conductance. Simple mechanical pressing was also found to increasetheNWfilmconductanceduetothereductionofjunctionresistance.Theoverallpropertiesoftransparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement forflexible electronics and solar cells.

read more

Citations
More filters
Journal ArticleDOI

Recent progress of flexible and wearable strain sensors for human-motion monitoring

TL;DR: In this article, the authors concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications.
Journal ArticleDOI

Bendable Solar Cells from Stable, Flexible, and Transparent Conducting Electrodes Fabricated Using a Nitrogen-Doped Ultrathin Copper Film

TL;DR: In this article, a completely continuous and smooth copper ultrathin film is fabricated by a simple room-temperature reactive sputtering process involving controlled nitrogen doping, which exhibits an optimized average transmittance of 84% over a spectral range of 380 −1000 nm and a sheet resistance lower than 20 Ω sq−1, with no electrical degradation after exposure to strong oxidation conditions for 760 h.
Journal ArticleDOI

Paper-based devices for energy applications

TL;DR: The role of paper as a main platform or part of energy storage and conversion devices such as fuel cells, lithium-ion batteries, and alkaline batteries thoroughly is discussed thoroughly.
Journal ArticleDOI

AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide

TL;DR: In this paper, a broad study of transparent and conducting Al-doped ZnO (AZO) thin films that could replace indium tin oxide (ITO) as transparent electrode in optoelectronic devices is presented.
Journal ArticleDOI

High-Performance Transparent Conductors from Networks of Gold Nanowires

TL;DR: In this article, the authors reported the deposition and characterization of thin networks of gold nanowires on plastic substrates, and the average nanowire diameter was 47 nm, while the networks had mean thicknesses in the range of 35-750 nm.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Journal ArticleDOI

Plasmonics for improved photovoltaic devices

TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Related Papers (5)