scispace - formally typeset
Open AccessJournal ArticleDOI

Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury

Reads0
Chats0
TLDR
It is demonstrated that necroptosis in ischemia–reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroPTosis, are protected from IRI.
Abstract
Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia–reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.

read more

Citations
More filters
Journal ArticleDOI

Acute kidney injury

TL;DR: Evidence suggests that patients who have had acute kidney injury are at increased risk of subsequent chronic kidney disease, and new diagnostic techniques (eg, renal biomarkers) might help with early diagnosis.
Journal ArticleDOI

The role of iron and reactive oxygen species in cell death

TL;DR: The different roles of iron in triggering cell death, targets of iron-dependent ROS that mediate cell death and a new form ofIron-dependent cell death termed ferroptosis are described to suggest new therapeutic avenues to treat cancer, organ damage and degenerative disease.
Journal ArticleDOI

Necroptosis and its role in inflammation

TL;DR: The mechanisms regulating necroptosis and its potential role in inflammation and disease are discussed and RIPK1 has important kinase-dependent and scaffolding functions that inhibit or trigger necroPTosis and apoptosis.
References
More filters
Journal ArticleDOI

Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death

TL;DR: This paper identified the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes.
Journal ArticleDOI

Mitochondrial Membrane Permeabilization in Cell Death

TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Journal ArticleDOI

Sterile inflammation: sensing and reacting to damage

TL;DR: The triggers and receptor pathways that result in sterile inflammation and its impact on human health are reviewed.
Journal ArticleDOI

Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury

TL;DR: It is demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection.
Journal ArticleDOI

Ischemia and reperfusion—from mechanism to translation

TL;DR: Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea as discussed by the authors.
Related Papers (5)