scispace - formally typeset
Search or ask a question

Showing papers on "Chronic stress published in 2013"


Journal ArticleDOI
TL;DR: It is demonstrated that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk.
Abstract: Neuropsychiatric disease frequently presents with an underlying hyporeactivity or hyperreactivity of the HPA stress axis, suggesting an exceptional vulnerability of this circuitry to external perturbations Parental lifetime exposures to environmental challenges are associated with increased offspring neuropsychiatric disease risk, and likely contribute to stress dysregulation While maternal influences have been extensively examined, much less is known regarding the specific role of paternal factors To investigate the potential mechanisms by which paternal stress may contribute to offspring hypothalamic-pituitary-adrenal (HPA) axis dysregulation, we exposed mice to 6 weeks of chronic stress before breeding As epidemiological studies support variation in paternal germ cell susceptibility to reprogramming across the lifespan, male stress exposure occurred either throughout puberty or in adulthood Remarkably, offspring of sires from both paternal stress groups displayed significantly reduced HPA stress axis responsivity Gene set enrichment analyses in offspring stress regulating brain regions, the paraventricular nucleus (PVN) and the bed nucleus of stria terminalis, revealed global pattern changes in transcription suggestive of epigenetic reprogramming and consistent with altered offspring stress responsivity, including increased expression of glucocorticoid-responsive genes in the PVN In examining potential epigenetic mechanisms of germ cell transmission, we found robust changes in sperm microRNA (miR) content, where nine specific miRs were significantly increased in both paternal stress groups Overall, these results demonstrate that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk

657 citations


Journal ArticleDOI
TL;DR: A first implication is made that the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in the development and/or maintenance of psychopathology may be more subtle than it is in healthy but chronically stressed populations.

568 citations


Journal ArticleDOI
TL;DR: It is proposed that chronic stress evolves in a species only if it is adaptive, with the key factors being lifespan and life history.
Abstract: Summary Chronic activation of the stress axis caused by long-term uncontrollable and unpredictable factors in the environment has been regarded as causing maladaptive and/or pathological effects, both by those studying animals in the laboratory and in nature. While pathology may apply to the former, I argue that it does not apply to the latter. Our thinking on the role of chronic stress in animals in nature has been heavily influenced by biomedical research, but much less so by the ecological and evolutionary context within which animals actually function. I argue that when such stressors occur (e.g. periods of high predation risk, food limitation, prolonged severe weather, social conflict, etc.), although the animal may be chronically stressed, its responses are adaptive and continue to promote fitness. Chronic stressors in nature can be subdivided into whether they are reactive (direct physiological challenges threatening homeostasis and not requiring cognitive processing – for example, food limitation) or anticipatory (perceived to be threatening and requiring cognitive processing – for example, high predation risk). For anticipatory stressors, their impact on the animal should not be based on their absolute duration (they may be acute), but rather by the duration of their physiological consequences. The anticipatory stressor of persistent high predation risk does not elicit chronic stress in all prey classes. Cyclic snowshoe hare and arctic ground squirrels exhibit evidence of chronic stress when predator numbers are high, but cyclic vole and noncyclic elk populations do not. I suggest that chronic stress has evolved to benefit the fitness of the former and not the later, with the key factors being lifespan and life history. I propose that chronic stress evolves in a species only if it is adaptive.

409 citations


Journal ArticleDOI
TL;DR: Two arms of the UPR signaling pathway have been described in plants: one that involves two ER membrane-associated transcription factors and another that involves a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60), which activates autophagy, a cell survival response.
Abstract: Endoplasmic reticulum (ER) stress is of considerable interest to plant biologists because it occurs in plants subjected to adverse environmental conditions ER stress responses mitigate the damage caused by stress and confer levels of stress tolerance to plants ER stress is activated by misfolded proteins that accumulate in the ER under adverse environmental conditions Under these conditions, the demand for protein folding exceeds the capacity of the system, which sets off the unfolded protein response (UPR) Two arms of the UPR signaling pathway have been described in plants: one that involves two ER membrane-associated transcription factors (bZIP17 and bZIP28) and another that involves a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60) Under mild or short-term stress conditions, signaling from IRE1 activates autophagy, a cell survival response But under severe or chronic stress conditions, ER stress can lead to cell death

394 citations


Journal Article
TL;DR: Chronic stress may synergistically potentiate reward sensitivity, food preference, and the wanting and seeking of hyperpalatable foods, as well as induce metabolic changes that promote weight and body fat mass.
Abstract: Obesity is a heterogeneous construct that, despite multiple and diverse attempts, has been difficult to treat. One conceptualization gaining media and research attention in recent years is that foods, particularly hyperpalatable (e.g., high-fat, high sugar) ones, may possess addictive qualities. Stress is an important factor in the development of addiction and in addiction relapse, and may contribute to an increased risk for obesity and other metabolic diseases. Uncontrollable stress changes eating patterns and the salience and consumption of hyperpalatable foods; over time, this could lead to changes in allostatic load and trigger neurobiological adaptations that promote increasingly compulsive behavior. This association may be mediated by alterations in the hypothalamic-pituitary-adrenal (HPA) axis, glucose metabolism, insulin sensitivity, and other appetite-related hormones and hypothalamic neuropeptides. At a neurocircuitry level, chronic stress may affect the mesolimbic dopaminergic system and other brain regions involved in stress/motivation circuits. Together, these may synergistically potentiate reward sensitivity, food preference, and the wanting and seeking of hyperpalatable foods, as well as induce metabolic changes that promote weight and body fat mass. Individual differences in susceptibility to obesity and types of stressors may further moderate this process. Understanding the associations and interactions between stress, neurobiological adaptations, and obesity is important in the development of effective prevention and treatment strategies for obesity and related metabolic diseases.

386 citations


Journal ArticleDOI
TL;DR: This study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis and supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage.

342 citations


Journal ArticleDOI
TL;DR: The conclusion is that a consistent, predictable, endocrine response to chronic stress, regardless of the protocol used to induce chronic stress and the species under study, does not exist.

331 citations


Journal ArticleDOI
TL;DR: Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process.
Abstract: Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process.

292 citations


Journal ArticleDOI
TL;DR: Stress increased the internal complexity of microglia, enhancing ramification without altering the overall area occupied by the cell and that this effect was more pronounced in larger cells, highlighting that increased ramification ofmicroglia may represent an important neurobiological mechanism through which microglial mediate the behavioral effects of chronic psychological stress.
Abstract: Recently, it has been discovered that the working memory deficits induced by exposure to chronic stress can be prevented by treating stressed animals with minocycline, a putative inhibitor of microglial activity. One of the pressing issues that now requires clarification is exactly how exposure to chronic stress modifies microglial morphology, this being a significant issue as microglial morphology is tightly coupled with their function. To examine how chronic stress alters microglial morphology, we digitally reconstructed microglia within the rat medial prefrontal cortex. Our analysis revealed that stress increased the internal complexity of microglia, enhancing ramification (i.e. branching) without altering the overall area occupied by the cell and that this effect was more pronounced in larger cells. We subsequently determined that minocycline treatment largely abolished the pro-ramifying effects of stress. With respect to mechanisms, we could not find any evidence of increased inflammation or neurodegeneration (interleukin-1β, MHC-II, CD68, terminal deoxynucleotidyl transferase dUTP nick end labeling, and activated caspase-3). We did, however, find that chronic stress markedly increased the expression of β1-integrin (CD29), a protein previously implicated in microglial ramification. Together, these findings highlight that increased ramification of microglia may represent an important neurobiological mechanism through which microglia mediate the behavioral effects of chronic psychological stress.

260 citations


Journal ArticleDOI
TL;DR: The historical and conventional methods used to characterize acute and chronic stress responses are described and the primary systems and parameters that regulate and/or are influenced by stress are reviewed, with an emphasis on parameters evaluated in toxicity studies.
Abstract: Stress often occurs during toxicity studies. The perception of sensory stimuli as stressful primarily results in catecholamine release and activation of the hypothalamic-pituitary-adrenal (HPA) axis to increase serum glucocorticoid concentrations. Downstream effects of these neuroendocrine signals may include decreased total body weights or body weight gain; food consumption and activity; altered organ weights (e.g., thymus, spleen, adrenal); lymphocyte depletion in thymus and spleen; altered circulating leukocyte counts (e.g., increased neutrophils with decreased lymphocytes and eosinophils); and altered reproductive functions. Typically, only some of these findings occur in a given study. Stress responses should be interpreted as secondary (indirect) rather than primary (direct) test article-related findings. Determining whether effects are the result of stress requires a weight-of-evidence approach. The evaluation and interpretation of routinely collected data (standard in-life, clinical pathology, and anatomic pathology endpoints) are appropriate and generally sufficient to assess whether or not changes are secondary to stress. The impact of possible stress-induced effects on data interpretation can partially be mitigated by toxicity study designs that use appropriate control groups (e.g., cohorts treated with vehicle and subjected to the same procedures as those dosed with test article), housing that minimizes isolation and offers environmental enrichment, and experimental procedures that minimize stress and sampling and analytical bias. This article is a comprehensive overview of the biological aspects of the stress response, beginning with a Summary (Section 1) and an Introduction (Section 2) that describes the historical and conventional methods used to characterize acute and chronic stress responses. These sections are followed by reviews of the primary systems and parameters that regulate and/or are influenced by stress, with an emphasis on parameters evaluated in toxicity studies: In-life Procedures (Section 3), Nervous System (Section 4), Endocrine System (Section 5), Reproductive System (Section 6), Clinical Pathology (Section 7), and Immune System (Section 8). The paper concludes (Section 9) with a brief discussion on Minimizing Stress-Related Effects (9.1.), and a final section explaining why Parameters routinely measured are appropriate for assessing the role of stress in toxicology studies (9.2.).

246 citations


Journal ArticleDOI
TL;DR: Physical, psychological or combined-stress conditions evoke a proinflammatory response in the brain and other systems, characterized by a complex release of several inflammatory mediators including cytokines, prostanoids, nitric oxide (NO) and transcription factors.

Journal ArticleDOI
TL;DR: These studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior.
Abstract: Upon binding of cortisol, the glucocorticoid receptor (GR) regulates the transcription of specific target genes, including those that encode the stress hormones corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). Dysregulation of the stress axis is a hallmark of major depression in human patients. However, it is still unclear how glucocorticoid signaling is linked to affective disorders. We identified an adult-viable zebrafish mutant in which the negative feedback on the stress response is disrupted, due to abolition of all transcriptional activity of GR. As a consequence, cortisol is elevated, but unable to signal through GR. When placed into an unfamiliar aquarium (‘novel tank’), mutant fish become immobile (‘freeze’), show reduced exploratory behavior and do not habituate to this stressor upon repeated exposure. Addition of the antidepressant fluoxetine to the holding water and social interactions restore normal behavior, followed by a delayed correction of cortisol levels. Fluoxetine does not affect overall transcription of CRH, the mineralocorticoid receptor (MR), the serotonin transporter Serta or GR itself. Fluoxetine, however, suppresses the stress-induced upregulation of MR and Serta in both wildtype fish and mutants. Our studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior. Importantly, the zebrafish model opens up the possibility of high-throughput drug screens in search of new classes of antidepressants.

Journal ArticleDOI
TL;DR: The results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects.

Journal ArticleDOI
TL;DR: In this article, the extent to which the endocannabinoid system, which is known to regulate emotional behavior and neuroplasticity, contributes to changes in amygdalar structure and function following chronic stress was investigated.
Abstract: Hyperactivation of the amygdala following chronic stress is believed to be one of the primary mechanisms underlying the increased propensity for anxiety-like behaviors and pathological states; however, the mechanisms by which chronic stress modulates amygdalar function are not well characterized. The aim of the current study was to determine the extent to which the endocannabinoid (eCB) system, which is known to regulate emotional behavior and neuroplasticity, contributes to changes in amygdalar structure and function following chronic stress. To examine the hypothesis, we have exposed C57/Bl6 mice to chronic restraint stress, which results in an increase in fatty acid amide hydrolase (FAAH) activity and a reduction in the concentration of the eCB N-arachidonylethanolamine (AEA) within the amygdala. Chronic restraint stress also increased dendritic arborization, complexity and spine density of pyramidal neurons in the basolateral nucleus of the amygdala (BLA) and increased anxiety-like behavior in wild-type mice. All of the stress-induced changes in amygdalar structure and function were absent in mice deficient in FAAH. Further, the anti-anxiety effect of FAAH deletion was recapitulated in rats treated orally with a novel pharmacological inhibitor of FAAH, JNJ5003 (50 mg per kg per day), during exposure to chronic stress. These studies suggest that FAAH is required for chronic stress to induce hyperactivity and structural remodeling of the amygdala. Collectively, these studies indicate that FAAH-mediated decreases in AEA occur following chronic stress and that this loss of AEA signaling is functionally relevant to the effects of chronic stress. These data support the hypothesis that inhibition of FAAH has therapeutic potential in the treatment of anxiety disorders, possibly by maintaining normal amygdalar function in the face of chronic stress.

Journal ArticleDOI
TL;DR: These findings demonstrate that witnessing traumatic events is a potent stress in adult male mice capable of inducing long-lasting neurobiological perturbations.

Journal ArticleDOI
18 Jan 2013-Science
TL;DR: The data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.
Abstract: Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.

Journal ArticleDOI
16 Apr 2013-eLife
TL;DR: It is found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression and rats showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons after acute stress.
Abstract: A little stress can be good for you. Just over 100 years ago, psychologists Robert Yerkes and John Dodson suggested that cognitive performance improves as stress increases, although it falls off again if stress levels continue to rise. The hippocampus is a key brain region for both memory and the regulation of emotion, and is highly sensitive to the main class of stress hormones, glucocorticoids. One particular subregion of the hippocampus, the dentate gyrus, contains a high density of glucocorticoid receptors, and is also notable for being one of only two regions in the adult mammalian brain that can give rise to new neurons via a process called neurogenesis. Chronic stress is known to impair memory and to reduce neurogenesis. However, the effects of acute stress are less clear-cut: early studies suggested that it suppressed the generation of new neurons, whereas several recent studies have observed no effect. Other work has shown that acute stress increases the expression of growth factors—substances that stimulate cellular growth and proliferation—which would seem to suggest that stress could enhance neurogenesis. Now Kirby et al. have obtained further insights into the effects of acute stress on the proliferation of cells in the dentate gyrus. Exposing rats to a moderate acute stressor, namely being restrained for a few hours, led to increased neurogenesis in the dorsal, but not ventral, hippocampus. Injecting rats with the stress hormone corticosterone had the same effect. In both cases, the enhanced neurogenesis was accompanied by increased expression of a growth factor called FGF2, which is produced by glial cells called astrocytes. Intriguingly, Kirby and co-workers found that the stressed rats performed better than control animals in a memory test. Moreover, the beneficial effects were seen if the rats performed the task 2 weeks after their stressful experience, but not if they performed the task 2 days after being stressed. This is pertinent because new neurons in the dentate gyrus become functional 2 weeks after being generated, which suggests that the stress-induced increase in neurogenesis could account for the rats' improved memory. The work of Kirby and co-workers has thus identified a mechanism by which moderate acute stress could have beneficial effects on cognition. Given that acute stress can be harmful in other instances—leading, for example, to post-traumatic stress disorder—further work is required to identify the factors that determine whether a response to stress is adaptive or pathological.

Journal ArticleDOI
TL;DR: While GR-related changes after CMS might be relevant for the depressive phenotype, the ability of antidepressant treatment to correct some of these alterations may contribute to the normalization of HPA axis dysfunctions associated with stress-related disorders.

Journal ArticleDOI
TL;DR: It is concluded that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes, providing evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength.
Abstract: Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression Both changes were reversed by chronic fluoxetine CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength Our findings suggest novel therapeutic targets for this debilitating disease

Journal ArticleDOI
TL;DR: The susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals, which provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression.
Abstract: A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference 65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression.

Journal ArticleDOI
TL;DR: The results suggest that persistent stress exposure may alter the brain's response to food in ways that predispose individuals to poor eating habits which, if sustained, may increase risk for obesity.

Journal ArticleDOI
TL;DR: The results of the current study indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astroCyte network.
Abstract: Chronic stress is well recognized to decrease the number of GFAP⁺ astrocytes within the prefrontal cortex (PFC). Recent research, however, has suggested that our understanding of how stress alters astrocytes may be incomplete. Specifically, chronic stress has been shown to induce a unique form of microglial remodelling, but it is not yet clear whether astrocytes also undergo similar structural modifications. Such alterations may be significant given the role of astrocytes in modulating synaptic function. Accordingly, in the current study we have examined changes in astrocyte morphology following exposure to chronic stress in adult rats, using three-dimensional digital reconstructions of astrocytes. Our analysis indicated that chronic stress produced profound atrophy of astrocyte process length, branching and volume. We additionally examined changes in astrocyte-specific S100β, which are both a putative astrocyte marker and a protein whose expression is associated with astrocyte distress. While we found that S100β levels were increased by stress, this increase was not correlated with atrophy. We further established that while chronic stress was associated with a decrease in astrocyte numbers when GFAP labelling was used as a marker, we could find no evidence of a decrease in the total number of cells, based on Nissl staining, or in the number of S100β⁺ cells. This finding suggests that chronic stress may not actually reduce astrocyte numbers and may instead selectively decrease GFAP expression. The results of the current study are significant as they indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astrocyte network.

Journal ArticleDOI
TL;DR: The goal of the 3RP is to enhance individuals' adaptive responses to chronic stress through increasing awareness and decreasing the physiological, emotional, cognitive, and behavioral effects of the stress response, while simultaneously promoting the effects of being in the RR.

Journal ArticleDOI
TL;DR: It is proposed that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down- regulated during chronic stress and aging, and it is suggested that the loss of Lon responsiveness may be a significant factor in Aging, and in age-related diseases.
Abstract: The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by ‘electron leakage’ from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.

Journal ArticleDOI
TL;DR: The hypothesis that insulin resistance evolved as a physiological adaptive mechanism in human survival is supported and that the same mechanism is inappropriately activated on a chronic basis in the current environment, leading to the manifestations of the metabolic syndrome.
Abstract: Human survival has relied upon the ability to withstand starvation through energy storage, the capacity to fight off infection by a proinflammatory immune response, and the ability to cope with physical stressors by an adaptive stress response. Energy storage, mainly as glycogen in liver and triglycerides in adipose tissue, is regulated by the anabolic actions of insulin. On the other hand, mobilization of stored energy during infection, trauma or stress is served by the temporary inhibition of insulin action (insulin resistance) in target tissues by proinflammatory cytokines and stress hormones. In the current environment, high energy intake, low physical activity, and chronic stress favor the storage of surplus fat in adipose tissue depots that far exceeds their storage capacity and liporegulation. Lipid overload in central fat depots initiates an inflammatory response and adipocyte dysfunction with resultant low-grade systemic inflammation and lipid overflow to peripheral tissues. In turn, proinflammatory cytokines and non-oxidized lipid metabolites, accumulated in liver and muscle cells, activate the mechanism of insulin resistance as would occur in the case of infection or stress. The same factors together with the ensuing insulin resistance further contribute to pancreatic β-cell dysfunction and ultimately to type 2 diabetes and cardiovascular disease. The present review supports the hypothesis that insulin resistance evolved as a physiological adaptive mechanism in human survival and that the same mechanism is inappropriately activated on a chronic basis in the current environment, leading to the manifestations of the metabolic syndrome.

Journal ArticleDOI
TL;DR: Animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis and provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual's stress response, and specifically glucoc Corticoid action, on breast cancer and other solid tumor biology.
Abstract: The diagnosis of cancer elicits a broad range of well-characterized stress-related biobehavioral responses. Recent studies also suggest that an individual’s neuroendocrine stress response can influence tumor biology. One of the major physiological pathways altered by the response to unrelenting social stressors is the hypothalamic–pituitary–adrenal or HPA axis. Initially following acute stress exposure, an increased glucocorticoid response is observed; eventually, chronic stress exposure can lead to a blunting of the normal diurnal cortisol pattern. Interestingly, recent evidence also links high primary tumor glucocorticoid receptor expression (and associated increased glucocorticoid-mediated gene expression) to more rapid estrogen-independent breast cancer progression. Furthermore, animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis. These findings provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual’s stress response, and specifically glucocorticoid action, on breast cancer and other solid tumor biology. How this increased glucocorticoid signaling might contribute to cancer progression is the subject of this review.

Journal ArticleDOI
TL;DR: GA-induced improvements in 11β-HSD activities in certain tissues were observed, although it is uncertain if these effects are manifested after adaptation due to the withdrawal of the stress response, and the ability of GA to improve stress-induced disturbances in the absence of adaptation needs to be investigated further.
Abstract: Chronic stress has been shown to have a strong link towards metabolic syndrome (MetS). Glycyrrhizic acid (GA) meanwhile has been shown to improve MetS symptoms caused by an unhealthy diet by inhibiting 11β-HSD 1. This experiment aimed to determine the effects of continuous, moderate-intensity stress on rats with and without GA intake on systolic blood pressure (SBP) across a 28-day period, as well as glucose metabolism, and 11β-HSD 1 and 2 activities at the end of the 28-day period. Adaptation to the stressor (as shown by SBP) resulted in no significant defects in glucose metabolism by the end of the experimental duration. However, a weakly significant increase in renal 11β-HSD 1 and a significant increase in subcutaneous adipose tissue 11β-HSD 1 activities were observed. GA intake did not elicit any significant benefit in glucose metabolism, indicating that the stress response may block its effects. However, GA-induced improvements in 11β-HSD activities in certain tissues were observed, although it is uncertain if these effects are manifested after adaptation due to the withdrawal of the stress response. Hence the ability of GA to improve stress-induced disturbances in the absence of adaptation needs to be investigated further.

Journal ArticleDOI
TL;DR: Swimming exercise may inhibit activation of inflammation/IDO pathways induced by CUMS, thereby ameliorating depression and suggested that CUMS activate HPA axis and induce immune activation, which may stimulate IDO activity, leading to the reduction of 5-HT level in brain, thereby resulting in depression.

Journal ArticleDOI
TL;DR: Low HRV (lower parasympathetic activity) might serve as stress indicator in children, and associations with self-reported chronic stress aspects (events, emotions and problems) and salivary cortisol were performed.

Journal ArticleDOI
TL;DR: Both psychological and hormonal factors were related to the lower levels of sexual arousal seen in women high in chronic stress, but distraction was the only significant predictor when controlling for other variables.