scispace - formally typeset
Search or ask a question

Showing papers on "Electricity generation published in 2020"


Journal ArticleDOI
20 Feb 2020-Nature
TL;DR: It is shown that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.
Abstract: Extensive efforts have been made to harvest energy from water in the form of raindrops1–6, river and ocean waves7,8, tides9 and others10–17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects—as seen in characterizations of the charge generation and transfer that occur at solid–liquid1–4 or liquid–liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects. A device involving a polytetrafluoroethylene film, an indium tin oxide substrate and an aluminium electrode allows improved electricity generation from water droplets, which bridge the previously disconnected circuit components.

699 citations


Journal ArticleDOI
TL;DR: In-depth analysis of TEGs is presented, starting by an extensive description of their working principle, types, used materials, figure of merit, improvement techniques including different thermoelectric materials arrangement (conventional, segmented and cascaded), and used technologies and substrates types (silicon, ceramics and polymers).

352 citations


Journal ArticleDOI
17 Feb 2020-Nature
TL;DR: Thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment, demonstrating the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.
Abstract: Harvesting energy from the environment offers the promise of clean power for self-sustained systems1,2. Known technologies—such as solar cells, thermoelectric devices and mechanical generators—have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production3–5. The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism6–12. Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches. A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.

319 citations


Journal ArticleDOI
TL;DR: The characteristics, advantages, limitations, costs, and environmental considerations have been compared with the help of tables and demonstrations to ease the final decision and managing the emerging issues and may prove highly useful for various stakeholders of the energy sector.

284 citations


Journal ArticleDOI
17 Jul 2020
TL;DR: In this article, different methods of thermal energy storage including sensible heat storage, latent heat storage and thermochemical energy storage, focusing mainly on phase change materials (PCMs) as a form of suitable solution for energy utilisation to fill the gap between demand and supply to improve the energy efficiency of a system.
Abstract: The achievement of European climate energy objectives which are contained in the European Union's (EU) “20–20–20″ targets and in the European Commission's (EC) Energy Roadmap 2050 is possible, among other things, through the use of energy storage technologies. The use of thermal energy storage (TES) in the energy system allows to conserving energy, increase the overall efficiency of the systems by eliminating differences between supply and demand for energy. The article presents different methods of thermal energy storage including sensible heat storage, latent heat storage and thermochemical energy storage, focusing mainly on phase change materials (PCMs) as a form of suitable solution for energy utilisation to fill the gap between demand and supply to improve the energy efficiency of a system. PCMs allow the storage of latent thermal energy during phase change at almost stable temperature. The article presents a classification of PCMs according to their chemical nature as organic, inorganic and eutectic and by the phase transition with their advantages and disadvantages. In addition, different methods of improving the effectiveness of the PCM materials such as employing cascaded latent heat thermal energy storage system, encapsulation of PCMs and shape-stabilisation are presented in the paper. Furthermore, the use of PCM materials in buildings, power generation, food industry and automotive applications are presented and the modelling tools for analysing the functionality of PCMs materials are compared and classified.

223 citations


Journal ArticleDOI
TL;DR: The properties of LIBs, including their operation mechanism, battery design and construction, and advantages and disadvantages, have been analyzed in detail to provide insight into the development of grid-level energy storage systems.
Abstract: In the electrical energy transformation process, the grid-level energy storage system plays an essential role in balancing power generation and utilization. Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response, modularization, and flexible installation. Among several battery technologies, lithium-ion batteries (LIBs) exhibit high energy efficiency, long cycle life, and relatively high energy density. In this perspective, the properties of LIBs, including their operation mechanism, battery design and construction, and advantages and disadvantages, have been analyzed in detail. Moreover, the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services: (1) frequency regulation; (2) peak shifting; (3) integration with renewable energy sources; and (4) power management. In addition, the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.

223 citations


Journal ArticleDOI
TL;DR: In this article, the effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. But the main objective of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems.

193 citations


Journal ArticleDOI
Yan Zhang1, Fang Wan1, Shuo Huang1, Shuai Wang1, Zhiqiang Niu1, Jun Chen1 
TL;DR: An aqueous Zn-ion battery that can be self-recharged by the spontaneous redox reaction between cathode and oxygen from ambient environment without external power supply is reported.
Abstract: Self-charging power systems integrating energy harvesting technologies and batteries are attracting extensive attention in energy technologies. However, the conventional integrated systems are highly dependent on the availability of the energy sources and generally possess complicated configuration. Herein, we develop chemically self-charging aqueous zinc-ion batteries with a simplified two-electrode configuration based on CaV6O16·3H2O electrode. Such system possesses the capability of energy harvesting, conversion and storage simultaneously. It can be chemically self-recharged by the spontaneous redox reaction between the discharged cathode and oxygen from the ambient environment. Chemically self-recharged zinc-ion batteries display an initial open-circuit voltage of about 1.05 V and a considerable discharge capacity of about 239 mAh g−1, indicating the excellent self-rechargeability. Impressively, such chemically self-charging zinc-ion batteries can also work well at chemical or/and galvanostatic charging hybrid modes. This work not only provides a route to design chemically self-charging energy storage, but also broadens the horizons of aqueous zinc-ion batteries. Self-charging power systems integrating energy generation and storage are receiving consideration attention. Here the authors report an aqueous Zn-ion battery that can be self-recharged by the spontaneous redox reaction between cathode and oxygen from ambient environment without external power supply.

185 citations


Journal ArticleDOI
TL;DR: In this article, a job creation assessment for the global power sector from 2015 to 2050 is estimated and presented on a regional basis, and it is found that the global direct jobs associated with the electricity sector increases from about 21 million in 2015 to nearly 35 million in 2050.

173 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of thermal energy storage (TES) technologies investigated, demonstrated and/or deployed in CSP plants with a specific emphasis on TES materials perspective is presented.

171 citations


Journal ArticleDOI
TL;DR: In this paper, the authors calculate the implications of this constraint on the substitution of fossil fuel power plants with renewable energy sources, using the hourly data of the electric power demand in the Electric Reliability Council of Texas, and demonstrate that significant energy storage capacity is needed when the market penetration of renewables increases and the utilization of solar and wind energy sources expands to approximately 25% to 30% of the annual electricity production.

Journal ArticleDOI
23 Mar 2020
TL;DR: Current and future emissions trade-offs in 59 world regions with heterogeneous households are analyzed by combining forward-looking integrated assessment model simulations with bottom-up life-cycle assessments to show that already under current carbon intensities of electricity generation, electric cars and heat pumps are less emission intensive than fossil-fuel-based alternatives in 53 world regions.
Abstract: The electrification of passenger road transport and household heating features prominently in current and planned policy frameworks to achieve greenhouse gas emissions reduction targets. However, since electricity generation involves using fossil fuels, it is not established where and when the replacement of fossil-fuel-based technologies by electric cars and heat pumps can effectively reduce overall emissions. Could electrification policies backfire by promoting their diffusion before electricity is decarbonized? Here we analyse current and future emissions trade-offs in 59 world regions with heterogeneous households, by combining forward-looking integrated assessment model simulations with bottom-up life-cycle assessments. We show that already under current carbon intensities of electricity generation, electric cars and heat pumps are less emission intensive than fossil-fuel-based alternatives in 53 world regions, representing 95% of the global transport and heating demand. Even if future end-use electrification is not matched by rapid power-sector decarbonization, it will probably reduce emissions in almost all world regions. Little is known about the actual effects of electrification policies on carbon emissions. This study shows that, under current carbon intensities of electricity generation, electric cars and heat pumps are less emission intensive than fossil-fuel-based alternatives in 53 of 59 world regions.

Journal ArticleDOI
TL;DR: In this paper, the authors present the science and technology that underpins thermoelectric generators (TEGs) and outline the key challenges associated with the development of new materials and devices that offer higher power output, while matching TE solutions to the wide range of applications that would benefit from energy harvesting.
Abstract: All machines from jet engines to microprocessors generate heat, as do manufacturing processes ranging from steel to food production. Thermoelectric generators (TEGs) are solid-state devices able to convert the resulting heat flux directly into electrical power. TEGs therefore have the potential to offer a simple, compact route to power generation in almost every industrial sector. Here, in a Roadmap developed with wide-ranging contributions from the UK Thermoelectric Network and international partners, we present the science and technology that underpins TEGs. We outline how thermoelectric (TE) technology capable of generating power outputs from microwatts to tens/hundreds kW, and potentially to MW, can have an impact across a wide range of applications in powering devices, ranging from medical to building monitoring, the internet of things, transportation and industrial sectors. The complementary application of TE technology in cooling affords additional opportunities in refrigeration and thermal management. Improved waste-heat harvesting and recovery and more efficient cooling offer significant opportunities to reduce energy usage and CO2 emissions. We provide an overview of the key challenges associated with the development of new materials and devices that offer higher power output, while matching TE solutions to the wide range of applications that would benefit from energy harvesting. There is an existing supply chain to develop, manufacture and integrate thermoelectric devices into a broad range of end-user sectors all with global market potential: the full realisation of which will require new state-of-the-art manufacturing techniques to be embraced in order to drive down costs through high-volume manufacturing to widen the application base.

Journal ArticleDOI
TL;DR: In this paper, the authors present a review on thermal energy storage (TES) systems and an update of the latest developments of different technologies of TES that are commercially available or under investigation.

Journal ArticleDOI
TL;DR: Variational mode decomposition (VMD) algorithm can use VMD to decompose the wind speed signal to obtain different scale fluctuations or trends, so as to fully exploit the potential information of wind speed, and obtain more accurate prediction results.

Journal ArticleDOI
13 May 2020
TL;DR: This review primarily analyzes recent developments in fuel cells technologies and up-to-date modeling for PEMFCs, SOFCs and DMFCs.
Abstract: Energy storage and conversion is a very important link between the steps of energy production and energy consumption. Traditional fossil fuels are a natural and unsustainable energy storage medium with limited reserves and notorious pollution problems, therefore demanding a better choice to store and utilize the green and renewable energies in the future. Energy and environmental problems require a clean and efficient way of using the fuels. Fuel cell functions to efficiently convert oxidant and chemical energy accumulated in the fuel directly into DC electric, with the by-products of heat and water. Fuel cells, which are known as effective electrochemical converters, and electricity generation technology has gained attention due to the need for clean energy, the limitation of fossil fuel resources and the capability of a fuel cell to generate electricity without involving any moving mechanical part. The fuel cell technologies that received high interest for commercialization are polymer electrolyte membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs), and direct methanol fuel cells (DMFCs). The optimum efficiency for the fuel cell is not bound by the principle of Carnot cycle compared to other traditional power machines that are generally based on thermal cycles such as gas turbines, steam turbines and internal combustion engines. However, the fuel cell applications have been restrained by the high cost needed to commercialize them. Researchers currently focus on the discovery of different materials and manufacturing methods to enhance fuel cell performance and simplify components of fuel cells. Fuel cell systems’ designs are utilized to reduce the costs of the membrane and improve cell efficiency, durability and reliability, allowing them to compete with the traditional combustion engine. In this review, we primarily analyze recent developments in fuel cells technologies and up-to-date modeling for PEMFCs, SOFCs and DMFCs.

Journal ArticleDOI
TL;DR: In this article, a novel fluidic photothermal structure integrated with a brine-drenching induced electricity generator is reported for simultaneous clean water and power production, which is capable of sustaining solar-thermal distillation systems (e.g. interfacial and multi-stage configurations) at high energy conversion efficiency.
Abstract: Water and energy are intimately intertwined, and it is high time to put forth integrated approaches to address the challenges and opportunities of the water–energy nexus. Herein, a novel fluidic photothermal structure integrated with a brine-drenching induced electricity generator is reported for simultaneous clean water and power production. The fluidic photothermal structure is capable of sustaining solar-thermal distillation systems (e.g. interfacial and multi-stage configurations) at high energy conversion efficiency while completely preventing salt formation from occurring in the long-term desalination process, by taking advantage of unidirectional brine fluid transportation. The brine-drenching induced electricity allows immediate power generation with a piece of wet fabric only. Furthermore, the fabric-based energy generator exhibits remarkable programmable properties, and we have also demonstrated that power generation is also achievable with different water sources such as human sweat, groundwater and rainwater, which opens up exciting applications in various fields of energy harvesting and water detection systems, and provides a promising solution for sustainable powering of wearable devices and electronics.

Journal ArticleDOI
TL;DR: The basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided.
Abstract: The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.

Journal ArticleDOI
TL;DR: The update presented here introduces a generation mix more representative of modern power systems, with the removal of several nuclear and oil-generating units and the addition of natural gas, wind, solar photovoltaics, concentrating solar power, and energy storage.
Abstract: The evolving nature of electricity production, transmission, and consumption necessitates an update to the IEEE's Reliability Test System (RTS), which was last modernized in 1996. The update presented here introduces a generation mix more representative of modern power systems, with the removal of several nuclear and oil-generating units and the addition of natural gas, wind, solar photovoltaics, concentrating solar power, and energy storage. The update includes assigning the test system a geographic location in the southwestern United States to enable the integration of spatio-temporally consistent wind, solar, and load data with forecasts. Additional updates include common RTS transmission modifications in published literature, definitions for reserve product requirements, and market simulation descriptions to enable benchmarking of multi-period power system scheduling problems. The final section presents example results from a production cost modeling simulation on the updated RTS system data.

Journal ArticleDOI
TL;DR: In this article, the authors presented a mathematical model of parameters related to Greenhouse gas emission and demonstrated its emission rates resulting from various fuels used in Bangladeshi power plants using HOMER (Hybrid Optimization of Multiple Energy Resources) software.

Journal ArticleDOI
TL;DR: In this article, the authors provide a forward-looking perspective on the challenges and opportunities associated with nanofluids as direct absorbers, through a critical comparison of design considerations, as well as the most recent experimental results of less well explored areas like hybrid photovoltaic/thermal systems and direct steam generation.

Journal ArticleDOI
13 Jul 2020-Energies
TL;DR: The thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts as discussed by the authors.
Abstract: A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains. The first group deals with the use of heat emitted from a radioisotope to supply electricity to various devices. In this group, space exploration was the only application for which thermoelectricity was successful. In the second group, a natural heat source could prove useful for producing electricity, but as thermoelectricity is still at an initial phase because of low conversion efficiency, applications are still at laboratory level. The third group is progressing at a high speed, mainly because the investigations are funded by governments and/or car manufacturers, with the final aim of reducing vehicle fuel consumption and ultimately mitigating the effect of greenhouse gas emissions.

Journal ArticleDOI
TL;DR: In this article, an innovative 3D nanocomposite Au@Bi2MoO6-carbon dots (CDs) solar steamer has been prepared: it exhibits outstanding light absorption of 70%, a photothermal conversion efficiency of 97.1% and an evaporation rate of 1.69 kg m-2 h-1 under one sun illumination.

Journal ArticleDOI
11 May 2020
TL;DR: In this article, the authors demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component.
Abstract: More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability. Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages.

Journal ArticleDOI
TL;DR: A review of the literature shows that the most common hybrid systems implementation involve the integration of geothermal with solar (45% of systems) followed by the integrated of a cooling tower into the geothermal system (30% of system) as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the impacts that the pandemic has caused on the electricity sector is provided, where the share of renewable generation has increased against the decline of the total electricity generation.
Abstract: As COVID-19 sweeps through the whole world, human activities have been changed significantly. Under such circumstances, the electricity sector is deeply affected and faced with great challenges. This paper provides a comprehensive review of the impacts that the pandemic has caused on the electricity sector. Electricity demand has dropped sharply as governments around the world executed lockdown restrictions, while the load composition and daily load profile have also changed. The share of renewable generation has increased against the decline of the total electricity generation. Changed power balance situation and increased uncertainty of demand have posed higher pressure on system operators, along with voltage violation issue and challenges for system maintenance and management. The electricity market is also substantially influenced, while long-term investment in clean energy is expected to be stable. The externality such as emission reduction is also discussed.

Journal ArticleDOI
TL;DR: This paper comprehensively reviews the important aspects to understand the applications of fast responsive storage technologies more effectively for FR services and highlights the gaps and limitations in the state-of-the-art practices.
Abstract: A paradigm shift in power generation technologies is happening all over the world. This results in replacement of conventional synchronous machines with inertia less power electronic interfaced renewable energy sources (RES). The replacement by intermittent RES, i.e., solar PV and wind turbines, has two-fold effect on power systems: (i) reduction in inertia and (ii) intermittent generation, lead to the degradation of the frequency stability. In modern power system, the frequency regulation (FR) has become one of the most crucial challenges compared to conventional system because the inertia is reduced and both generation and demand are stochastic. The fast responsive energy storage technologies, i.e., battery energy storage, supercapacitor storage technology, flywheel energy storage, and superconducting magnetic energy storage are recognized as viable sources to provide FR in power system with high penetration of RES. The important aspects that are required to understand the applications of rapid responsive energy storage technologies for FR are modeling, planning (sizing and location of storage), and operation (control of storage). This paper comprehensively reviews these important aspects to understand the applications of fast responsive storage technologies more effectively for FR services. In addition, based on the real world experiences this paper highlights the gaps and limitations in the state-of-the-art practices. Moreover, this study also provides recommendations and future directions for researchers working on the applications of storage technologies providing FR services.

Journal ArticleDOI
TL;DR: In this article, a review of the thermal spraying techniques and current advancements in materials, mechanical properties, understand the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings is presented.
Abstract: Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.

Journal ArticleDOI
TL;DR: In this paper, a review of the current status and future prospect of solid oxide fuel cells (SOFCs) is presented to offer the guideline of its way for implementation and the different anode materials have been discussed to have a guideline for future development.
Abstract: Solid oxide fuel cells (SOFC) is in focus to integrate with biomass gasification technologies to have a single and highly efficient system; combining the benefits of renewable energy sources and hydrogen energy systems. Combined heat and power (CHP) for houses is highly efficient (>90%). Micro CHP for space heating in Europe and Japan is already been popular using natural gas as fuel. Biomass derived syngas μ-CHP is more interesting. A brief overview of the systems, the present status and the future prospect of the technology has been discussed in this review to offer the guideline of its way for implementation. Since SOFC exposes to syngas derived from biomass gasification, SOFC material needs to be developed, particularly anode part, for the better sulfur tolerance and inhibit carbon deposition. The different anode materials have been discussed to have a guideline for future development. By the development of SOFC material, the entire energy integration system seems to offer greater energy efficiency for sustainable and renewable energy route.

Journal ArticleDOI
TL;DR: This paper is a review of this emerging and innovative Carnot battery technology, including a market analysis, and tries to define objective performance indicators for this technology.
Abstract: The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case.