scispace - formally typeset
Search or ask a question

Showing papers on "Fatty acid published in 2005"


Journal ArticleDOI
TL;DR: In this paper, structural features that influence the physical and fuel properties of a fatty ester molecule are chain length, degree of unsaturation, and branching of the chain, as well as the structural features of the fatty acid and the alcohol moieties.

2,145 citations


Journal ArticleDOI
TL;DR: In this paper, Saponification number (SN), iodine value (IV) and cetane number (CN) of seed oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively.
Abstract: Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel.

961 citations


Journal ArticleDOI
01 Jun 2005-Fuel
TL;DR: In this article, the kinematic viscosity of various fatty compounds as well as components of petrodiesel were determined at 40°C (ASTM D445) as this is the temperature prescribed in various biodiesel and petro-diesel standards.

807 citations


Journal ArticleDOI
TL;DR: Magnetic resonance spectroscopy studies in humans suggest that a defect in insulin-stimulated glucose transport in skeletal muscle is the primary metabolic abnormality in diabetes patients with type 2 diabetes, and fatty acids appear to cause this defect in glucose transport.
Abstract: Insulin resistance plays a major role in the pathogenesis of the metabolic syndrome and type 2 diabetes, and yet the mechanisms responsible for it remain poorly understood. Magnetic resonance spectroscopy studies in humans suggest that a defect in insulin-stimulated glucose transport in skeletal muscle is the primary metabolic abnormality in insulin-resistant patients with type 2 diabetes. Fatty acids appear to cause this defect in glucose transport by inhibiting insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated phosphatidylinositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular and intrahepatic fatty acid metabolites; these include increased fat delivery to muscle and liver as a consequence of either excess energy intake or defects in adipocyte fat metabolism, and acquired or inherited defects in mitochondrial fatty acid oxidation. Understanding the molecular and biochemical defects responsible for insulin resistance is beginning to unveil novel therapeutic targets for the treatment of the metabolic syndrome and type 2 diabetes.

643 citations


Journal ArticleDOI
TL;DR: This work proposes a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis and lists candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter.
Abstract: Mycobacterium tuberculosis is known to synthesize alpha-, methoxy-, and keto-mycolic acids. We propose a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis. Fatty acid synthetase I provides C(20)-S-coenzyme A to the fatty acid synthetase II system (FAS-IIA). Modules of FAS-IIA and FAS-IIB introduce cis unsaturation at two locations on a growing meroacid chain to yield three different forms of cis,cis-diunsaturated fatty acids (intermediates to alpha-, methoxy-, and keto-meroacids). These are methylated, and the mature meroacids and carboxylated C(26)-S-acyl carrier protein enter into the final Claisen-type condensation with polyketide synthase-13 (Pks13) to yield mycolyl-S-Pks13. We list candidate genes in the genome encoding the proposed dehydrase and isomerase in the FAS-IIA and FAS-IIB modules. We propose that the processing of mycolic acids begins by transfer of mycolic acids from mycolyl-S-Pks13 to d-mannopyranosyl-1-phosphoheptaprenol to yield 6-O-mycolyl-beta-d-mannopyranosyl-1-phosphoheptaprenol and then to trehalose 6-phosphate to yield phosphorylated trehalose monomycolate (TMM-P). Phosphatase releases the phosphate group to yield TMM, which is immediately transported outside the cell by the ABC transporter. Antigen 85 then catalyzes the transfer of a mycolyl group from TMM to the cell wall arabinogalactan and to other TMMs to produce arabinogalactan-mycolate and trehalose dimycolate, respectively. We list candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter. The enzymes within this total pathway are targets for new drug discovery.

607 citations


Journal ArticleDOI
TL;DR: It is demonstrated that CD36 is involved in oral LCFA detection and the possibility that an alteration in the lingual fat perception may be linked to feeding dysregulation is raised.
Abstract: Rats and mice exhibit a spontaneous attraction for lipids. Such a behavior raises the possibility that an orosensory system is responsible for the detection of dietary lipids. The fatty acid transporter CD36 appears to be a plausible candidate for this function since it has a high affinity for long-chain fatty acids (LCFAs) and is found in lingual papillae in the rat. To explore this hypothesis further, experiments were conducted in rats and in wild-type and CD36-null mice. In mice, RT-PCR experiments with primers specific for candidate lipid-binding proteins revealed that only CD36 expression was restricted to lingual papillae although absent from the palatal papillae. Immunostaining studies showed a distribution of CD36 along the apical side of circumvallate taste bud cells. CD36 gene inactivation fully abolished the preference for LCFA-enriched solutions and solid diet observed in wild-type mice. Furthermore, in rats and wild-type mice with an esophageal ligation, deposition of unsaturated LCFAs onto the tongue led to a rapid and sustained rise in flux and protein content of pancreatobiliary secretions. These findings demonstrate that CD36 is involved in oral LCFA detection and raise the possibility that an alteration in the lingual fat perception may be linked to feeding dysregulation.

594 citations


Journal ArticleDOI
TL;DR: The data demonstrate for the first time that the antibacterial action of unsaturated fatty acids is mediated by the inhibition of fatty acid synthesis, and also correlated with antibacterial activity.

585 citations


Journal ArticleDOI
TL;DR: The findings show an endogenous mechanism that may underlie the beneficial actions of omega-3 EPA and provide targeted approaches for the treatment of intestinal inflammation and counter-regulates leukocyte-mediated tissue injury and proinflammatory gene expression.
Abstract: Resolvin E1 (RvE1; 5S,12R,18R-trihydroxyeicosapentaenoic acid) is an antiinflammatory lipid mediator derived from omega-3 fatty acid eicosapentaenoic acid (EPA). At the local site of inflammation, aspirin treatment enhances EPA conversion to 18R-oxygenated products, including RvE1, which carry potent antiinflammatory signals. Here, we obtained evidence for reduced leukocyte infiltration in a mouse peritonitis model, where the administration of EPA and aspirin initiated the generation of RvE1 in the exudates. Similar results were obtained with the administration of synthetic RvE1, which blocked leukocyte infiltration. RvE1 also protected against the development of 2,4,6-trinitrobenzene sulfonic acid-induced colitis. The beneficial effect was reflected by increased survival rates, sustained body weight, improvement of histologic scores, reduced serum anti-2,4,6-trinitrobenzene sulfonic acid IgG, decreased leukocyte infiltration, and proinflammatory gene expression, including IL-12 p40, TNF-α, and inducible nitric oxide synthase. Thus, the endogenous lipid mediator RvE1 counter-regulates leukocyte-mediated tissue injury and proinflammatory gene expression. These findings show an endogenous mechanism that may underlie the beneficial actions of omega-3 EPA and provide targeted approaches for the treatment of intestinal inflammation.

580 citations


Journal ArticleDOI
TL;DR: It is suggested that higher intake of trans fatty acids could adversely affect endothelial function, which might partially explain why the positive relation between trans fat and cardiovascular risk is greater than one would predict based solely on its adverse effects on lipids.
Abstract: Trans fatty acid intake has been associated with a higher risk of cardiovascular disease. The relation is explained only partially by the adverse effect of these fatty acids on the lipid profile. We examined whether trans fatty acid intake could also affect biomarkers of inflammation and endothelial dysfunction including C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor 2 (sTNFR-2), E-selectin, and soluble cell adhesion molecules (sICAM-1 and sVCAM-1). We conducted a cross-sectional study of 730 women from the Nurses' Health Study I cohort, aged 43-69 y, free of cardiovascular disease, cancer, and diabetes at time of blood draw (1989-1990). Dietary intake was assessed by a validated FFQ in 1986 and 1990. CRP levels were 73% higher among those in the highest quintile of trans fat intake, compared with the lowest quintile. IL-6 levels were 17% higher, sTNFR-2 5%, E-selectin 20%, sICAM-1 10%, and sVCAM-1 levels 10% higher. Trans fatty acid intake was positively related to plasma concentration of CRP (P = 0.009), sTNFR-2 (P = 0.002), E-selectin (P = 0.003), sICAM-1 (P = 0.007), and sVCAM-1 (P = 0.001) in linear regression models after controlling for age, BMI, physical activity, smoking status, alcohol consumption, intake of monounsaturated, polyunsaturated, and saturated fatty acids, and postmenopausal hormone therapy. In conclusion, this study suggests that higher intake of trans fatty acids could adversely affect endothelial function, which might partially explain why the positive relation between trans fat and cardiovascular risk is greater than one would predict based solely on its adverse effects on lipids.

574 citations


Journal ArticleDOI
TL;DR: Examples are presented demonstrating that wild-type and genetically engineered strains of Y. lipolytica can be used for alkane and fatty-acid bioconversion, such as aroma production, for production of SCP and SCO, for citric acid production, in bioremediation, in fine chemistry, for steroid biotransformation, and in food industry.
Abstract: The alkane-assimilating yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates such as n-alkanes, fatty acids, fats and oils for which it has specific metabolic pathways. An overview of the oxidative degradation pathways for alkanes and triglycerides in Y. lipolytica is given, with new insights arising from the recent genome sequencing of this yeast. This includes the interaction of hydrophobic substrates with yeast cells, their uptake and transport, the primary alkane oxidation to the corresponding fatty alcohols and then by different enzymes to fatty acids, and the subsequent degradation in peroxisomal beta-oxidation or storage into lipid bodies. Several enzymes involved in hydrophobic substrate utilisation belong to multigene families, such as lipases/esterases (LIP genes), cytochromes P450 (ALK genes) and peroxisomal acyl-CoA oxidases (POX genes). Examples are presented demonstrating that wild-type and genetically engineered strains of Y. lipolytica can be used for alkane and fatty-acid bioconversion, such as aroma production, for production of SCP and SCO, for citric acid production, in bioremediation, in fine chemistry, for steroid biotransformation, and in food industry. These examples demonstrate distinct advantages of Y. lipolytica for their use in bioconversion reactions of biotechnologically interesting hydrophobic substrates.

564 citations


Journal ArticleDOI
TL;DR: It is shown that the fatty acid-derived ketone body (d)-β-hydroxybutyrate ((d-β-OHB) specifically activates PUMA-G/HM74a at concentrations observed in serum during fasting, thereby preventing ketoacidosis and promoting efficient use of fat stores.

Journal ArticleDOI
TL;DR: A complex cellular-regulatory network that controls HCV RNA replication is illustrated, presumably by modulating the trafficking and association of cellular and/or viral proteins with cellular membranes, suggesting that pharmacologic manipulation of these pathways may have a therapeutic effect in chronic HCV infection.
Abstract: Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Our laboratory has previously demonstrated that high-level HCV replication during acute infection of chimpanzees is associated with the modulation of multiple genes involved in lipid metabolism, and that drugs that regulate cholesterol and fatty acid biosynthesis regulate the replication of the subgenomic HCV replicon in Huh-7 cells. In this article, we demonstrate that Huh-7 cells harboring replicating, full-length HCV RNAs express elevated levels of ATP citrate lyase and acetyl-CoA synthetase genes, both of which are involved in cholesterol and fatty acid biosynthesis. Further, we confirm that the cholesterol-biosynthetic pathway controls HCV RNA replication by regulating the cellular levels of geranylgeranyl pyrophosphate, we demonstrate that the impact of geranylgeranylation depends on the fatty acid content of the cell, and we show that fatty acids can either stimulate or inhibit HCV replication, depending on their degree of saturation. These results illustrate a complex cellular-regulatory network that controls HCV RNA replication, presumably by modulating the trafficking and association of cellular and/or viral proteins with cellular membranes, suggesting that pharmacologic manipulation of these pathways may have a therapeutic effect in chronic HCV infection.

Journal ArticleDOI
TL;DR: It is suggested that strains of lactobacilli could remove cholesterol via various mechanisms and may be promising candidates for use as a dietary adjunct to lower serum cholesterol in vivo.

Journal ArticleDOI
TL;DR: In vivo studies established that PPARalpha- and SREBP-1c-regulated genes are key targets for PUFA control of hepatic gene expression, and these mechanisms control hepatic lipid composition and affect whole-body lipid composition.
Abstract: Dietary fat regulates gene expression by controlling the activity or abundance of key transcription factors. In vitro binding and cell culture studies have identified many transcription factors as prospective targets for fatty acid regulation, including peroxisome proliferator-activated receptors (PPARalpha, beta, gamma1, and gamma2), sterol regulatory element binding protein-1c (SREBP-1c), hepatic nuclear factors (HNF-4alpha and gamma), retinoid X receptor (RXRalpha), liver X receptor (LXRalpha), and others. In vivo studies established that PPARalpha- and SREBP-1c-regulated genes are key targets for PUFA control of hepatic gene expression. PUFA activate PPARalpha by direct binding, leading to the induction of hepatic fatty acid oxidation. PUFA inhibit hepatic fatty acid synthesis by suppressing SREBP-1c nuclear abundance through several mechanisms, including suppression of SREBP-1c gene transcription and enhancement of proteasomal degradation and mRNA(SREBP1c) decay. Changes in intracellular nonesterified fatty acids (NEFA) correlate well with changes in PPARalpha activity and mRNA(SREBP-1c) abundance. Several mechanisms regulate intracellular NEFA composition, including fatty acid transport, acyl CoA synthetases and thioesterases, fatty acid elongases and desaturases, neutral and polar lipid lipases, and fatty acid oxidation. Many of these mechanisms are regulated by PPARalpha or SREBP-1c. Together, these mechanisms control hepatic lipid composition and affect whole-body lipid composition.

Journal ArticleDOI
TL;DR: In vivo reduction of DHA by dietary depletion of n-3 fatty acids decreased hippocampal PS and increased neuronal susceptibility to apoptosis in cultures, indicating that membrane interaction of Akt is the event responsible for the DHA effect, and Docosapentaenoic acid, which replaces DHA, was less effective in accumulating PS and translocating Akt and thus more effective in preventing apoptosis.
Abstract: Phosphatidylinositol 3-kinase [PI (3)K]/Akt signaling is a critical pathway in cell survival. Here, we demonstrate a mechanism where membrane alteration by the n-3 fatty acid status affects Akt signaling, impacting neuronal survival. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid highly enriched in neuronal membranes, promotes neuronal survival by facilitating membrane translocation/activation of Akt through its capacity to increase phosphatidylserine (PS), the major acidic phospholipid in cell membranes. The activation of PI (3)K and phosphatidylsinositol triphosphate formation were not affected by DHA, indicating that membrane interaction of Akt is the event responsible for the DHA effect. Docosapentaenoic acid, which replaces DHA during n-3 fatty acid deficiency, was less effective in accumulating PS and translocating Akt and thus less effective in preventing apoptosis. Consistently, in vivo reduction of DHA by dietary depletion of n-3 fatty acids decreased hippocampal PS and increased neuronal susceptibility to apoptosis in cultures. This mechanism may contribute to neurological deficits associated with n-3 fatty acid deficiency and support protective effects of DHA in pathological models such as brain ischemia or Alzheimer's disease.

Journal ArticleDOI
TL;DR: It is demonstrated that adipocyte/macrophage FABPs have a robust impact on multiple components of metabolic syndrome, integrating metabolic and inflammatory responses in mice and constituting a powerful target for the treatment of these diseases.

Journal ArticleDOI
29 Sep 2005-Oncogene
TL;DR: The data indicate that activation of SREBP by Akt leads to the induction of key enzymes of the cholesterol and fatty acid biosynthesis pathways, and thus membrane lipid biosynthesis.
Abstract: Protein kinase B (PKB/Akt) has been shown to play a role in protection from apoptosis, cell proliferation and cell growth. It is also involved in mediating the effects of insulin, such as lipogenesis, glucose uptake and conversion of glucose into fatty acids and cholesterol. Sterol-regulatory element binding proteins (SREBPs) are the major transcription factors that regulate genes involved in fatty acid and cholesterol synthesis. It has been postulated that constitutive activation of the phosphatidylinositol 3 kinase/Akt pathway may be involved in fatty acid and cholesterol accumulation that has been described in several tumour types. In this study, we have analysed changes in gene expression in response to Akt activation using DNA microarrays. We identified several enzymes involved in fatty acid and cholesterol synthesis as targets for Akt-regulated transcription. Expression of these enzymes has previously been shown to be regulated by the SREBP family of transcription factors. Activation of Akt induces synthesis of full-length SREBP-1 and SREBP-2 proteins as well as expression of fatty acid synthase (FAS), the key regulatory enzyme in lipid biosynthesis. We also show that Akt leads to the accumulation of nuclear SREBP-1 but not SREBP-2, and that activation of SREBP is required for Akt-induced activation of the FAS promoter. Finally, activation of Akt induces an increase in the concentration of cellular fatty acids as well as phosphoglycerides, the components of cellular membranes. Our data indicate that activation of SREBP by Akt leads to the induction of key enzymes of the cholesterol and fatty acid biosynthesis pathways, and thus membrane lipid biosynthesis.

Journal ArticleDOI
TL;DR: It is shown that acetaminophen, following deacetylation to its primary amine, is conjugated with arachidonic acid in the brain and the spinal cord to form the potent TRPV1 agonist N-arachidonoylphenolamine (AM404), which acts on the endogenous cannabinoid system, which, together with TRV1 and COX, is present in the pain and thermoregulatory pathways.

Journal ArticleDOI
TL;DR: The grass-based system increased the percentage of C18:1 trans fatty acid isomers in both breeds and the content of the beneficial n -3 polyunsaturated fatty acids and conjugated linoleic acids in beef muscle was significantly higher in animals on the grass- based system.

Journal ArticleDOI
TL;DR: Although unsaturated fatty acids increase cholesterol synthesis, they also increase hepatic LDL receptor number and LDL turnover in vivo and can play a role in determining plasma cholesterol.
Abstract: Dietary fatty acids have a considerable effect on plasma LDL cholesterol (LDL-C) concentrations and therefore on the risk for coronary heart disease. Numerous studies have been conducted in animal models to elucidate the mechanisms by which different types of fatty acids modulate plasma cholesterol concentrations. In addition, multiple clinical trials and epidemiological data have demonstrated the effects of fatty acids in determining the concentrations of circulating LDL. SFAs and trans fatty acids have a detrimental effect on plasma lipids, whereas PUFAs of the (n-6) family and monounsaturated fatty acids decrease plasma LDL-C concentrations. Among the SFAs, stearic acid (18:0) appears to have a neutral effect on LDL-C, while lauric (12:0), myristic (14:0), and palmitic (16:0) acids are considered to be hypercholesterolemic. SFAs increase plasma LDL-C by increasing the formation of LDL in the plasma compartment and by decreasing LDL turnover. Although unsaturated fatty acids increase cholesterol synthesis, they also increase hepatic LDL receptor number and LDL turnover in vivo. Fatty acids are also ligands of important regulatory elements, which can play a role in determining plasma cholesterol. This article presents a summary of the major effects of various types of fatty acids on plasma lipid concentrations and the mechanisms involved.

Journal ArticleDOI
01 May 2005-Diabetes
TL;DR: Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue, and short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Abstract: AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2, which modulates synthesis of mycolates during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis.

Journal ArticleDOI
TL;DR: The understanding of dietary lipid profile and its influence on membrane function in relation to metabolic dysregulation has exciting potential for the prevention and treatment of a range of prevalent disease states.
Abstract: Lipids play varied and critical roles in metabolism, with function dramatically modulated by the individual fatty acid moities in complex lipid entities. In particular, the fatty acid composition of membrane lipids greatly influences membrane function. Here we consider the role of dietary fatty acid profile on membrane composition and, in turn, its impact on prevalent disease clusters of the metabolic syndrome and mental illness. Applying the classical physiological conformer-regulator paradigm to quantify the influence of dietary fats on membrane lipid composition (i.e. where the membrane variable is plotted against the same variable in the environment--in this case dietary fats), membrane lipid composition appears as a predominantly regulated parameter. Membranes remain relatively constant in their saturated (SFA) and monounsaturated (MUFA) fatty acid levels over a wide range of dietary variation for these fatty acids. Membrane composition was found to be more responsive to n-6 and n-3 polyunsaturated fatty acid (PUFA) levels in the diet and most sensitive to n-3 PUFA and to the n-3/n-6 ratio. These differential responses are probably due to the fact that both n-6 and n-3 PUFA classes cannot be synthesised de novo by higher animals. Diet-induced modifications in membrane lipid composition are associated with changes in the rates of membrane-linked cellular processes that are major contributors to energy metabolism. For example, in the intrinsic activity of fundamental processes such as the Na+/K+ pump and proton pump-leak cycle. Equally, dietary lipid profile impacts substantially on diseases of the metabolic syndrome with evidence accruing for changes in metabolic rate and neuropeptide regulation (thus influencing both sides of the energy balance equation), in second messenger generation and in gene expression influencing a range of glucose and lipid handling pathways. Finally, there is a growing literature relating changes in dietary fatty acid profile to many aspects of mental health. The understanding of dietary lipid profile and its influence on membrane function in relation to metabolic dysregulation has exciting potential for the prevention and treatment of a range of prevalent disease states.

Journal ArticleDOI
16 Jun 2005-Oncogene
TL;DR: It is suggested that activation of Akt blocks the ability of cancer cells to metabolize nonglycolytic bioenergetic substrates, leading to glucose addiction.
Abstract: Activation of the oncogenic kinase Akt stimulates glucose uptake and metabolism in cancer cells and renders these cells susceptible to death in response to glucose withdrawal. Here we show that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) reverses the sensitivity of Akt-expressing glioblastoma cells to glucose deprivation. AICAR's protection depends on the activation of AMPK, as expression of a dominant-negative form of AMPK abolished this effect. AMPK is a cellular energy sensor whose activation can both block anabolic pathways such as protein synthesis and activate catabolic reactions such as fatty acid oxidation to maintain cellular bioenergetics. While rapamycin treatment mimicked the effect of AICAR on inhibiting markers of cap-dependent translation, it failed to protect Akt-expressing cells from death upon glucose withdrawal. Compared to control cells, Akt-expressing cells were impaired in the ability to induce fatty acid oxidation in response to glucose deprivation unless stimulated with AICAR. Stimulation of fatty acid oxidation was sufficient to maintain cell survival as activation of fatty acid oxidation with bezafibrate also protected Akt-expressing cells from glucose withdrawal-induced death. Conversely, treatment with a CPT-1 inhibitor to block fatty acid import into mitochondria prevented AICAR from stimulating fatty acid oxidation and promoting cell survival in the absence of glucose. Finally, cell survival did not require reversal of Akt's effects on either protein translation or lipid synthesis as the addition of the cell penetrant oxidizable substrate methyl-pyruvate was sufficient to maintain survival of Akt-expressing cells deprived of glucose. Together, these data suggest that activation of Akt blocks the ability of cancer cells to metabolize nonglycolytic bioenergetic substrates, leading to glucose addiction.

Journal ArticleDOI
TL;DR: It is shown that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans, and elevated expression of SCD1 in skeletal Muscle contributes to abnormal lipid metabolism and progression of obesity.

Journal ArticleDOI
TL;DR: By blending VOs to provide balanced levels of dietary fatty acids, up to 100% of the fish oil can be replaced by the VO blend without compromising growth or flesh quality, thereby providing a beneficial nutritional profile for human consumption.
Abstract: Atlantic salmon (Salmo salar L.) juveniles were fed either 100% fish oil (FO), 75% vegetable oil (VO), or 100% VO throughout their life cycle to harvest weight followed by a finishing diet period when all groups were fed 100% FO. The two experimental VO diets were tested at two different locations (Scotland and Norway) against the same control diet (100% FO). The VO blend was composed of rapeseed oil, palm oil, and linseed oil using capelin oil as a control for fatty acid class compositions. Flesh fatty acid profiles were measured regularly throughout the experiment, with the times of sampling determined by changes in pellet size/lipid content and fish life stage. Growth and mortality rates were not significantly affected by dietary fatty acid compositions throughout the life cycle, except during the seawater winter period in Norway when both growth and protein utilization were increased in salmon fed 100% VO compared to 100% FO. Flesh fatty acid composition was highly influenced by that of the diet, and after the finishing diet period the weekly intake recommendations of very long chain n-3 polyunsaturated fatty acid (VLCn-3 PUFA) for human health were 80 and 56% satisfied by a 200 g meal of 75% VO and 100% VO flesh, respectively. No effect on flesh astaxanthin levels was observed in relation to changing dietary oil sources. Sensory evaluation showed only minor differences between salmon flesh from the dietary groups, although prior to the finishing diet period, flesh from 100% VO had less rancid and marine characteristics and was preferred over flesh from the other dietary groups by a trained taste panel. After the finishing diet period, the levels of typical vegetable oil fatty acids in flesh were reduced, whereas those of VLCn-3 PUFA increased to levels comparable with a 100% FO fed salmon. No differences in any of the sensory characteristics were observed between dietary groups. By blending VOs to provide balanced levels of dietary fatty acids, up to 100% of the fish oil can be replaced by the VO blend without compromising growth or flesh quality. At the same time, 75% of the dietary fish oil can be replaced without compromising flesh VLCn-3 PUFA content, thereby providing a beneficial nutritional profile for human consumption.

Journal ArticleDOI
01 Apr 2005-Placenta
TL;DR: Estimation of fetal tissue fatty acid accretion suggests that current preterm infant feeds are unlikely to meet in utero rates of 22:6n-3 accretion, and consideration needs to be given to whether fetal plasma 22: 6n- 3 and 20:4n-6 enrichment and the low 18:2n- 6 facilitates accretion of 22-6n -3 and 20-4-6 in developing tissues.

Journal ArticleDOI
TL;DR: A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran and found that most triacylglyceride was hydrolyzed andFree fatty acid (FFA) content was raised up to 76% in six months.

Journal ArticleDOI
TL;DR: Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids, revealing that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.

Journal ArticleDOI
TL;DR: Results of the microarray analysis indicated that arginine supplementation increased adipose tissue expression of key genes responsible for fatty acid and glucose oxidation: NO synthase-1 (145%), heme oxygenase-3 (789%), AMP-activated protein kinase (123%), and peroxisome proliferator-activated receptor gamma coactivator-1alpha (500%).
Abstract: This study was conducted to test the hypothesis that dietary supplementation of arginine, the physiologic precursor of nitric oxide (NO), reduces fat mass in the Zucker diabetic fatty (ZDF) rat, a genetically obese animal model of type-II diabetes mellitus. Male ZDF rats, 9 wk old, were pair-fed Purina 5008 diet and received drinking water containing arginine-HCl (1.51%) or alanine (2.55%, isonitrogenous control) for 10 wk. Serum concentrations of arginine and NO(x) (oxidation products of NO) were 261 and 70% higher, respectively, in arginine-supplemented rats than in control rats. The body weights of arginine-treated rats were 6, 10, and 16% lower at wk 4, 7, and 10 after the treatment initiation, respectively, compared with control rats. Arginine supplementation reduced the weight of abdominal (retroperitoneal) and epididymal adipose tissues (45 and 25%, respectively) as well as serum concentrations of glucose (25%), triglycerides (23%), FFA (27%), homocysteine (26%), dimethylarginines (18-21%), and leptin (32%). The arginine treatment enhanced NO production (71-85%), lipolysis (22-24%), and the oxidation of glucose (34-36%) and octanoate (40-43%) in abdominal and epididymal adipose tissues. Results of the microarray analysis indicated that arginine supplementation increased adipose tissue expression of key genes responsible for fatty acid and glucose oxidation: NO synthase-1 (145%), heme oxygenase-3 (789%), AMP-activated protein kinase (123%), and peroxisome proliferator-activated receptor gamma coactivator-1alpha (500%). The induction of these genes was verified by real-time RT-PCR analysis. In sum, arginine treatment may provide a potentially novel and useful means to enhance NO synthesis and reduce fat mass in obese subjects with type-II diabetes mellitus.