scispace - formally typeset
Search or ask a question

Showing papers on "Heme oxygenase published in 2010"


Journal ArticleDOI
TL;DR: The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death.
Abstract: Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe2+, carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.

1,079 citations


Journal ArticleDOI
TL;DR: This review covers how redox-dependent transcriptional activators such as NF-E2 related factor 2, NF2, NF-κB and AP-1 along with the transcription repressor BTB and CNC homologue 1 (Bach1) control the inducible HO-1 gene expression and the role of central pro- and anti-inflammatory cellular signaling cascades including p38 MAPK and phosphatidylinositol-3 kinase (PI3K)/

667 citations


Journal ArticleDOI
TL;DR: The distinct regulation of iron homeostasis in M2 macrophages provides insights into their role under pathophysiological conditions.
Abstract: Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions, mimicked by the combined action of LPS and IFN-gamma (M1 polarization) However, macrophages can undergo an alternative type of activation stimulated by Th2 cytokines, and acquire a role in cell growth and tissue repair control (M2 polarization) We characterized the expression of genes related to iron homeostasis in fully differentiated unpolarized (M0), M1 and M2 human macrophages The molecular signature of the M1 macrophages showed changes in gene expression (ferroportin repression and H ferritin induction) that favour iron sequestration in the reticuloendothelial system, a hallmark of inflammatory disorders, whereas the M2 macrophages had an expression profile (ferroportin upregulation and the downregulation of H ferritin and heme oxygenase) that enhanced iron release The conditioned media from M2 macrophages promoted cell proliferation more efficiently than those of M1 cells and the effect was blunted by iron chelation The role of ferroportin-mediated iron release was demonstrated by the absence of differences from the media of macrophages of a patient with loss of function ferroportin mutation The distinct regulation of iron homeostasis in M2 macrophages provides insights into their role under pathophysiological conditions

342 citations


Journal ArticleDOI
TL;DR: This finding suggests that heme controls a macrophage iron recycling regulon involving Btb and Cnc Homology 1 and Nuclear Factor Erythroid 2-like to assure the coordinated degradation of heme by heme oxygenase 1, iron storage and detoxification by ferritin, and iron export by iron export protein ferroportin.
Abstract: Background Macrophages of the reticuloendothelial system play a key role in recycling iron from hemoglobin of senescent or damaged erythrocytes. Heme oxygenase 1 degrades the heme moiety and releases inorganic iron that is stored in ferritin or exported to the plasma via the iron export protein ferroportin. In the plasma, iron binds to transferrin and is made available for de novo red cell synthesis. The aim of this study was to gain insight into the regulatory mechanisms that control the transcriptional response of iron export protein ferroportin to hemoglobin in macrophages. Design and Methods Iron export protein ferroportin mRNA expression was analyzed in RAW264.7 mouse macrophages in response to hemoglobin, heme, ferric ammonium citrate or protoporphyrin treatment or to siRNA mediated knockdown or overexpression of Btb And Cnc Homology 1 or nuclear accumulation of Nuclear Factor Erythroid 2-like. Iron export protein ferroportin promoter activity was analyzed using reporter constructs that contain specific truncations of the iron export protein ferroportin promoter or mutations in a newly identified MARE/ARE element. Results We show that iron export protein ferroportin is transcriptionally co-regulated with heme oxygenase 1 by heme, a degradation product of hemoglobin. The protoporphyrin ring of heme is sufficient to increase iron export protein ferroportin transcriptional activity while the iron released from the heme moiety controls iron export protein ferroportin translation involving the IRE in the 5′untranslated region. Transcription of iron export protein ferroportin is inhibited by Btb and Cnc Homology 1 and activated by Nuclear Factor Erythroid 2-like involving a MARE/ARE element located at position −7007/−7016 of the iron export protein ferroportin promoter. Conclusions This finding suggests that heme controls a macrophage iron recycling regulon involving Btb and Cnc Homology 1 and Nuclear Factor Erythroid 2-like to assure the coordinated degradation of heme by heme oxygenase 1, iron storage and detoxification by ferritin, and iron export by iron export protein ferroportin.

235 citations


Journal ArticleDOI
23 Dec 2010-Blood
TL;DR: In HO-1(-/-) mammals, the reduced function and viability of erythrophagocytosing macrophages are the main causes of tissue damage and iron redistribution.

230 citations


Journal ArticleDOI
TL;DR: The implications of HO-1 properties for tumor proliferation and cell death, differentiation, angiogenesis and metastasis, and tumor-related inflammation are discussed and it is suggested that pharmacological agents that regulate HO activity orHO-1 gene silencing may become powerful tools for preventing the onset or progression of various cancers and sensitize them to anticancer therapies.
Abstract: Heme oxygenase-1 (HO-1) degrades heme to carbon monoxide (CO), biliverdin, and ferrous iron. As HO-1 expression is highly increased by stressful conditions, the major role of the enzyme is the protection against oxidative injury. Additionally, it regulates cell proliferation, modulates inflammatory response and facilitates angiogenesis. Beneficial activities of HO-1 have been recognized in many pathological states e.g. atherosclerosis, diabetes, ischemia/reperfusion injury or organ transplantation. Interestingly HO-1 expression is very often boosted in tumor tissues and could be further elevated in response to radio-, chemo-, or photodynamic therapy. A growing body of evidence suggests that HO-1 may play a role in tumor induction and can potently improve the growth and spread of tumors. This review discusses the implications of HO-1 properties for tumor proliferation and cell death, differentiation, angiogenesis and metastasis, and tumor-related inflammation. Finally, it suggests that pharmacological agents that regulate HO activity or HO-1 gene silencing may become powerful tools for preventing the onset or progression of various cancers and sensitize them to anticancer therapies.

229 citations


Journal ArticleDOI
TL;DR: Heme oxygenase-1 induction in the failing heart is an important cardioprotective adaptation that opposes pathological LV remodeling, and this effect is mediated, at least in part, by CO-dependent inhibition of mitochondrial permeability transition and apoptosis.
Abstract: Background— Heme oxygenase-1 (HO-1) is an inducible stress-response protein that imparts antioxidant and antiapoptotic effects. However, its pathophysiological role in cardiac remodeling and chronic heart failure (HF) is unknown. We hypothesized that induction of HO-1 in HF alleviates pathological remodeling. Methods and Results— Adult male nontransgenic and myocyte-restricted HO-1 transgenic mice underwent either sham operation or coronary ligation to induce HF. Four weeks after ligation, nontransgenic HF mice exhibited postinfarction left ventricular (LV) remodeling and dysfunction, hypertrophy, fibrosis, oxidative stress, apoptosis, and reduced capillary density, associated with a 2-fold increase in HO-1 expression in noninfarcted myocardium. Compared with nontransgenic mice, HO-1 transgenic HF mice exhibited significantly (P<0.05) improved postinfarction survival (94% versus 57%) and less LV dilatation (end-diastolic volume, 46±8 versus 85±32 μL), mechanical dysfunction (ejection fraction, 65±9% versu...

219 citations


Journal ArticleDOI
TL;DR: The results suggest that EC exerts part of its beneficial effect through activation of Nrf2 and an increase in the neuroprotective HO1 enzyme and in neurons derived from these knockout mice.
Abstract: Epidemiologic studies have shown that foods rich in polyphenols, such as flavanols, can lower the risk of ischemic heart disease; however, the mechanism of protection has not been clearly established. In this study, we investigated whether epicatechin (EC), a flavanol in cocoa and tea, is protective against brain ischemic damage in mice. Wild-type mice pretreated orally with 5, 15, or 30 mg/kg EC before middle cerebral artery occlusion (MCAO) had significantly smaller brain infarcts and decreased neurologic deficit scores (NDS) than did the vehicle-treated group. Mice that were posttreated with 30 mg/kg of EC at 3.5 hours after MCAO also had significantly smaller brain infarcts and decreased NDS. Similarly, WT mice pretreated with 30 mg/kg of EC and subjected to N-methyl-D-aspartate (NMDA)-induced excitotoxicity had significantly smaller lesion volumes. Cell viability assays with neuronal cultures further confirmed that EC could protect neurons against oxidative insults. Interestingly, the EC-associated neuroprotection was mostly abolished in mice lacking the enzyme heme oxygenase 1 (HO1) or the transcriptional factor Nrf2, and in neurons derived from these knockout mice. These results suggest that EC exerts part of its beneficial effect through activation of Nrf2 and an increase in the neuroprotective HO1 enzyme.

198 citations


Journal ArticleDOI
TL;DR: Overexpression of miR‐196 holds promise as a potential novel strategy to prevent or ameliorate hepatitis C infection, and to protect against liver injury in chronic HCV infection.

194 citations


Journal ArticleDOI
TL;DR: Recent findings on the regulation of the HO-1 gene, Hmox1, in the brain with particular focus on the transcription factors Nrf2 and HIF-1 are discussed.
Abstract: Heme oxygenase-1 (HO-1), an enzyme degrading heme to carbon monoxide, free iron, and biliverdin, participates in the cell defence against oxidative stress and it has been speculated that it might be a new therapeutic target for neuroprotection In this review, we discuss recent findings on the regulation of the HO-1 gene, Hmox1, in the brain with particular focus on the transcription factors Nrf2 and HIF-1 Functional polymorphisms in Hmox1 have been associated with high risk for Alzheimer's and Parkinson's disease Hence, we review the current knowledge on the role of HO-1 and its enzymatic products on these two pathologies as well as ischemic brain injury HO-1 modulates the inflammatory response in several scenarios, and therefore we discuss its role in modulation of the innate immune cell of the brain, microglia From the therapeutic side, the blood brain barrier represents an obstacle to directly modulate heme oxygenase activity, but drugs activating the transcription actor Nrf2, which have a very diverse molecular structure, may be good candidates to induce HO-1 in concert with other antioxidant and detoxification enzymes A more complete understanding on the mechanisms regulating HO-1 expression in brain cells and how these mechanisms are involved in neuropathological changes will be essential to develop these new therapeutic approaches

190 citations


Journal ArticleDOI
TL;DR: The data suggests that HO-1 is important for the anti-inflammatory activities of M-CSF-polarized M2 macrophages, and the CD163/HO-1/IL-10 axis appears to contribute to the generation of an immunosuppressive environment within the tumor stroma.

Journal ArticleDOI
TL;DR: This study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems, and augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

Journal ArticleDOI
TL;DR: This study provides a novel implication of the antidepressant mechanisms of DHA, which reduced expressions of tumor necrosis factor-α, interleukin-6, nitric oxide synthase, and cyclo-oxygenase-2, and induced upregulation of heme oxygenase-1 (HO-1) in BV-2 microglia.

Journal ArticleDOI
TL;DR: In this article, a panel of botanical pesticides using cultured human and rodent neuronal cell models, and identified plumbagin as a novel potent activator of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway.
Abstract: Many phytochemicals function as noxious agents that protect plants against insects and other damaging organisms. However, at subtoxic doses, the same phytochemicals may activate adaptive cellular stress response pathways that can protect cells against a variety of adverse conditions. We screened a panel of botanical pesticides using cultured human and rodent neuronal cell models, and identified plumbagin as a novel potent activator of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. In vitro, plumbagin increases nuclear localization and transcriptional activity of Nrf2, and induces the expression of the Nrf2/ARE-dependent genes, such as heme oxygenase 1 in human neuroblastoma cells. Plumbagin specifically activates the Nrf2/ARE pathway in primary mixed cultures from ARE-human placental alkaline phosphatase reporter mice. Exposure of neuroblastoma cells and primary cortical neurons to plumbagin provides protection against subsequent oxidative and metabolic insults. The neuroprotective effects of plumbagin are abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo, administration of plumbagin significantly reduces the amount of brain damage and ameliorates-associated neurological deficits in a mouse model of focal ischemic stroke. Our findings establish precedence for the identification and characterization of neuroprotective phytochemicals based upon their ability to activate adaptive cellular stress response pathways.

Journal ArticleDOI
TL;DR: This review focuses on the recent advances made in plant HO research involving its role in environmental stresses and emphasizes physiological, biochemical, and molecular aspects of this enzyme in plants.
Abstract: Haem oxygenase (HO) degrades free haem released from haem proteins with the generation of ferrous iron (Fe2+), biliverdin-IXalpha (BV-IXalpha), and carbon monoxide (CO). The mechanism of haem cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of HO differ substantially. The crystal structure of HO1, a monomeric protein, has been extensively reported in mammals, pathogenic bacteria, and cyanobacteria, but no such reports are available for higher plant HOs except a predicted model for pea HO1. Along with haem degradation, HO performs various cellular processes including iron acquisition/mobilization, phytochrome chromophore synthesis, cell protection, and stomatal regulation. To date, four HO genes (HO1, HO2, HO3, and HO4) have been reported in plants. HO1 has been well explored in cell metabolism; however, the divergent roles of the other three HOs is less known. The transcriptional up-regulation of HO1 in plants responds to many agents, such as light, UV, iron deprivation, reactive oxygen species (ROS), abscisic acid (ABA), and haematin. Recently the HO1/CO system has gained more attention due to its physiological cytoprotective role in plants. This review focuses on the recent advances made in plant HO research involving its role in environmental stresses. Moreover, the review emphasizes physiological, biochemical, and molecular aspects of this enzyme in plants.

Journal ArticleDOI
TL;DR: Since bilirubin significantly scavenged RONS but chronic treatment was even more protective the authors' observations support direct and indirect antioxidant properties of BVR and bilirUBin and an important role for B VR and bilIRubin in HO-1 conferred protection of endothelial cells.

Journal ArticleDOI
TL;DR: It is demonstrated that HO-1 inhibits autophagy, suggesting that the heme oxygenase system may contain therapeutic targets for AKI, and ecdysone-induced overexpression ofHO-1 in cells led to a delay in autophagic progression, and protected against cisplatin cytotoxicity.
Abstract: Autophagy is a tightly regulated, programmed mechanism to eliminate damaged organelles and proteins from a cell to maintain homeostasis. Cisplatin, a chemotherapeutic agent, accumulates in the proximal tubules of the kidney and causes dose-dependent nephrotoxicity, which may involve autophagy. In the kidney, cisplatin induces the protective antioxidant heme oxygenase-1 (HO-1). In this study, we examined the relationship between autophagy and HO-1 during cisplatin-mediated acute kidney injury (AKI). In wild-type primary proximal tubule cells (PTC), we observed a time-dependent increase in autophagy after cisplatin. In HO-1−/− PTC, however, we observed significantly higher levels of basal autophagy, impaired progression of autophagy, and increased apoptosis after cisplatin. Restoring HO-1 expression in these cells reversed the autophagic response and inhibited apoptosis after treatment with cisplatin. In vivo, although both wild-type and HO-1–deficient mice exhibited autophagosomes in the proximal tubules of the kidney in response to cisplatin, HO-1–deficient mice had significantly more autophagosomes, even in saline-treated animals. In addition, ecdysone-induced overexpression of HO-1 in cells led to a delay in autophagy progression, generated significantly lower levels of reactive oxygen species, and protected against cisplatin cytotoxicity. These findings demonstrsate that HO-1 inhibits autophagy, suggesting that the heme oxygenase system may contain therapeutic targets for AKI.

Journal ArticleDOI
TL;DR: It is revealed that resveratrol selectively induces heme oxygenase 1 (HO1) in a dose- and time-dependent manner in cultured mouse cortical neuronal cells and provides neuroprotection from free-radical or excitotoxicity damage and suggests a potential intracellular pathway by which resver atrol can provide cell/organ resistance against neuropathological conditions.

Journal ArticleDOI
TL;DR: It is demonstrated that eckol attenuates oxidative stress by activating Nrf2-mediated HO-1 induction via Erk and PI3K/Akt signaling, and treatments with U0126 and LY294002 inhibited the eickol-induced cytoprotective effect against oxidative cell damage.

Journal ArticleDOI
TL;DR: It is demonstrated that SFN could exert neuroprotective effects through increasing Nrf2 and HO-1 expression in the brain and reduced infarct ratio at 24h after HI.

Journal ArticleDOI
TL;DR: An overview of the current understanding of the structural and biochemical properties of the complex self-oxidation reactions in HO catalysis is provided, which suggests the Fe-OOH species as a key intermediate of the ring-opening reaction.
Abstract: Heme oxygenase (HO) is an enzyme that catalyzes the regiospecific conversion of heme to biliverdin IXalpha, CO, and free iron. In mammals, HO has a variety of physiological functions, including heme catabolism, iron homeostasis, antioxidant defense, cellular signaling, and O(2) sensing. The enzyme is also found in plants (producing light-harvesting pigments) and in some pathogenic bacteria, where it acquires iron from the host heme. The HO-catalyzed heme conversion proceeds through three successive oxygenations, a process that has attracted considerable attention because of its reaction mechanism and physiological importance. The HO reaction is unique in that all three O(2) activations are affected by the substrate itself. The first step is the regiospecific self-hydroxylation of the porphyrin alpha-meso carbon atom. The resulting alpha-meso-hydroxyheme reacts in the second step with another O(2) to yield verdoheme and CO. The third O(2) activation, by verdoheme, cleaves its porphyrin macrocycle to release biliverdin and free ferrous iron. In this Account, we provide an overview of our current understanding of the structural and biochemical properties of the complex self-oxidation reactions in HO catalysis. The first meso-hydroxylation is of particular interest because of its distinct contrast with O(2) activation by cytochrome P450. Although most heme enzymes oxidize exogenous substrates by high-valent oxo intermediates, HO was proposed to utilize the Fe-OOH intermediate for the self-hydroxylation. We have succeeded in preparing and characterizing the Fe-OOH species of HO at low temperature, and an analysis of its reaction, together with mutational and crystallographic studies, reveals that protonation of Fe-OOH by a distal water molecule is critical in promoting the unique self-hydroxylation. The second oxygenation is a rapid, spontaneous auto-oxidation of the reactive alpha-meso-hydroxyheme; its mechanism remains elusive, but the HO enzyme has been shown not to play a critical role in it. Until recently, the means of the third O(2) activation had remained unclear as well, but we have recently untangled its mechanistic outline. Reaction analysis of the verdoheme-HO complex strongly suggests the Fe-OOH species as a key intermediate of the ring-opening reaction. This mechanism is very similar to that of the first meso-hydroxylation, including the critical roles of the distal water molecule. A comprehensive study of the three oxygenations of HO highlights the rational design of the enzyme architecture and its catalytic mechanism. Elucidation of the last oxygenation step has enabled a kinetic analysis of the rate-determining step, making it possible to discuss the HO reaction mechanism in relation to its physiological functions.

Journal ArticleDOI
TL;DR: Data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells, suggesting that CA may represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis.
Abstract: Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and gamma-glutamyl-cysteine synthetase (gamma-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis.

Journal ArticleDOI
TL;DR: This review highlights the mechanisms by which the HO system potentiates insulin signalling, with particular emphasis on HO-mediated suppression of oxidative and inflammatory insults.
Abstract: Diabetes and obesity are chronic conditions associated with elevated oxidative/inflammatory activities with a continuum of tissue insults leading to more severe cardiometabolic and renal complications including myocardial infarction and end-stage-renal damage. A common denominator of these chronic conditions is the enhanced the levels of cytokines like tumour necrosis factor-alpha (TNF-α), interleukin (IL-6), IL-1β and resistin, which in turn activates the c-Jun-N-terminal kinase (JNK) and NF-κB pathways, creating a vicious cycle that exacerbates insulin resistance, type-2 diabetes and related complications. Emerging evidence indicates that heme oxygenase (HO) inducers are endowed with potent anti-diabetic and insulin sensitizing effects besides their ability to suppress immune/inflammatory response. Importantly, the HO system abates inflammation through several mechanisms including the suppression of macrophage-infiltration and abrogation of oxidative/inflammatory transcription factors like NF-κB, JNK and activating protein-1. This review highlights the mechanisms by which the HO system potentiates insulin signalling, with particular emphasis on HO-mediated suppression of oxidative and inflammatory insults. The HO system could be explored in the search for novel remedies against cardiometabolic diseases and their complications.

Journal ArticleDOI
TL;DR: GAcrp prevents LPS‐stimulated TNF‐α expression in Kupffer cells through the activation of the IL‐10/STAT3/HO‐1 pathway.

Journal ArticleDOI
28 Jul 2010-PLOS ONE
TL;DR: It is suggested that HO-1 does not protect or enhance the sensitivity to neuronal death in Parkinson's disease and that pharmacological or genetic intervention on Nrf2 may provide a neuroprotective benefit as add on therapy with current symptomatic protocols.
Abstract: Background The transcription factor Nrf2 (NF-E2-related factor 2) and its target gene products, including heme oxygenase-1 (HO-1), elicit an antioxidant response that may have therapeutic value for Parkinson's disease (PD). However, HO-1 protein levels are increased in dopaminergic neurons of Parkinson's disease (PD) patients, suggesting its participation in free-iron deposition, oxidative stress and neurotoxicity. Before targeting Nrf2 for PD therapy it is imperative to determine if HO-1 is neurotoxic or neuroprotective in the basal ganglia.

Journal ArticleDOI
TL;DR: Results show that ALA could be used effectively to protect soybean plants from the damaging effects of cold stress by enhancing the activity of heme proteins and by promoting heme catabolism leading to the production of the highly antioxidant biliverdin and carbon monoxide, without any adverse effect on the plant growth.

Journal ArticleDOI
TL;DR: Since HO-1 and its products are potentially toxic, a major challenge will be to devise clinically effective therapeutic modalities that targetHO-1 without causing any adverse effects.
Abstract: Heme oxygenase-1 (HO-1) metabolizes heme to generate carbon monoxide (CO), biliverdin, and iron. Biliverdin is subsequently metabolized to bilirubin by biliverdin reductase. HO-1 has recently emerged as a promising therapeutic target in the treatment of vascular disease. Pharmacological induction or gene transfer of HO-1 ameliorates vascular dysfunction in animal models of atherosclerosis, post-angioplasty restenosis, vein graft stenosis, thrombosis, myocardial infarction, and hypertension, while inhibition of HO-1 activity or gene deletion exacerbates these disorders. The vasoprotection afforded by HO-1 is largely attributable to its end products: CO and the bile pigments, biliverdin and bilirubin. These end products exert potent anti-inflammatory, antioxidant, anti-apoptotic, and anti-thrombotic actions. In addition, CO and bile pigments act to preserve vascular homeostasis at sites of arterial injury by influencing the proliferation, migration, and adhesion of vascular smooth muscle cells, endothelial cells, endothelial progenitor cells, or leukocytes. Several strategies are currently being developed to target HO-1 in vascular disease. Pharmacological induction of HO-1 by heme derivatives, dietary antioxidants, or currently available drugs, is a promising near-term approach, while HO-1 gene delivery is a long-term therapeutic goal. Direct administration of CO via inhalation or through the use of CO-releasing molecules and/or CO-sensitizing agents provides an attractive alternative approach in targeting HO-1. Furthermore, delivery of bile pigments, either alone or in combination with CO, presents another avenue for protecting against vascular disease. Since HO-1 and its products are potentially toxic, a major challenge will be to devise clinically effective therapeutic modalities that target HO-1 without causing any adverse effects.

Journal ArticleDOI
TL;DR: Findings offer the possibility of treating not only hypertension, but also other detrimental metabolic consequences of obesity including insulin resistance and dyslipidemia in obese populations by induction of HO-1 in adipocytes.
Abstract: Increases in visceral fat are associated with increased inflammation, dyslipidemia, insulin resistance, glucose intolerance, and vascular dysfunction. We examined the effect of the potent heme oxygenase (HO)-1 inducer, cobalt protoporphyrin (CoPP), on regulation of adiposity and glucose levels in both female and male obese mice. Both lean and obese mice were administered CoPP intraperitoneally (3 mg/kg once per week) for 6 weeks. Serum levels of adiponectin, tumor necrosis factor α (TNFa), interleukin (IL)-1β and IL-6, and HO-1, PPARγ, pAKT, and pAMPK protein expression in adipocytes and vascular tissue were measured. While female obese mice continued to gain weight at a rate similar to controls, induction of HO-1 slowed the rate of weight gain in male obese mice. HO-1 induction led to lowered blood pressure levels in obese male and female mice similar to that of lean male and female mice. HO-1 induction also produced a significant decrease in the plasma levels of IL-6, TNFα, IL-1β, and fasting glucose of obese females compared to untreated female obese mice. HO-1 induction increased the number and decreased the size of adipocytes of obese animals. HO-1 induction increased adiponectin, pAKT, pAMPK, and PPARγ levels in adipocyte of obese animals. Induction of HO-1 in adipocytes was associated with an increase in adiponectin and a reduction in inflammatory cytokines. These findings offer the possibility of treating not only hypertension, but also other detrimental metabolic consequences of obesity including insulin resistance and dyslipidemia in obese populations by induction of HO-1 in adipocytes.

Journal ArticleDOI
TL;DR: The antioxidant biliverdin reduces HCV replication in vitro by triggering the antiviral interferon response and might improve HCV therapy in the future.

Journal ArticleDOI
TL;DR: It is suggested that astaxanthin can induce HO-1 expression through activation of ERK signal pathways, thereby protecting the SH-SY5Y cells from Aβ(25-35)-induced oxidative cell death.