scispace - formally typeset
Search or ask a question

Showing papers on "In vivo published in 2008"


PatentDOI
TL;DR: In this article, the authors described the nanostructures, methods of preparing nanostructure, methods for detecting targets in subjects, and methods of treating diseases in subjects. An embodiment, among others, includes a metallic gold surface-enhanced Raman scattering nanoparticle, a Raman reporter and a protection structure.
Abstract: Nanostructures, methods of preparing nanostructures, methods of detecting targets in subjects, and methods of treating diseases in subjects, are disclosed An embodiment, among others, of the nanostructure includes a metallic gold surface- enhanced Raman scattering nanoparticle, a Raman reporter and a protection structure The protection structure may include a thiol-polyethylene glycol to which may be attached a target-specific probe

1,938 citations


Journal ArticleDOI
TL;DR: The merits, limitations, and appropriate use of current in vivo measures of insulin sensitivity/resistance, including the quantitative insulin sensitivity check index, are highlighted.
Abstract: Insulin resistance contributes to the pathophysiology of diabetes and is a hallmark of obesity, metabolic syndrome, and many cardiovascular diseases. Therefore, quantifying insulin sensitivity/resistance in humans and animal models is of great importance for epidemiological studies, clinical and basic science investigations, and eventual use in clinical practice. Direct and indirect methods of varying complexity are currently employed for these purposes. Some methods rely on steady-state analysis of glucose and insulin, whereas others rely on dynamic testing. Each of these methods has distinct advantages and limitations. Thus, optimal choice and employment of a specific method depends on the nature of the studies being performed. Established direct methods for measuring insulin sensitivity in vivo are relatively complex. The hyperinsulinemic euglycemic glucose clamp and the insulin suppression test directly assess insulin-mediated glucose utilization under steady-state conditions that are both labor and time intensive. A slightly less complex indirect method relies on minimal model analysis of a frequently sampled intravenous glucose tolerance test. Finally, simple surrogate indexes for insulin sensitivity/resistance are available (e.g., QUICKI, HOMA, 1/insulin, Matusda index) that are derived from blood insulin and glucose concentrations under fasting conditions (steady state) or after an oral glucose load (dynamic). In particular, the quantitative insulin sensitivity check index (QUICKI) has been validated extensively against the reference standard glucose clamp method. QUICKI is a simple, robust, accurate, reproducible method that appropriately predicts changes in insulin sensitivity after therapeutic interventions as well as the onset of diabetes. In this Frontiers article, we highlight merits, limitations, and appropriate use of current in vivo measures of insulin sensitivity/resistance.

1,320 citations


Journal ArticleDOI
TL;DR: In vivo SWNT drug delivery for tumor suppression in mice shows nanotube drug delivery is promising for high treatment efficacy and minimum side effects for future cancer therapy with low drug doses.
Abstract: Chemically functionalized single-walled carbon nanotubes (SWNT) have shown promise in tumor-targeted accumulation in mice and exhibit biocompatibility, excretion, and little toxicity. Here, we show in vivo SWNT drug delivery for tumor suppression in mice. We conjugate paclitaxel (PTX), a widely used cancer chemotherapy drug, to branched polyethylene glycol chains on SWNTs via a cleavable ester bond to obtain a water-soluble SWNT-PTX conjugate. SWNT-PTX affords higher efficacy in suppressing tumor growth than clinical Taxol in a murine 4T1 breast cancer model, owing to prolonged blood circulation and 10-fold higher tumor PTX uptake by SWNT delivery likely through enhanced permeability and retention. Drug molecules carried into the reticuloendothelial system are released from SWNTs and excreted via biliary pathway without causing obvious toxic effects to normal organs. Thus, nanotube drug delivery is promising for high treatment efficacy and minimum side effects for future cancer therapy with low drug doses.

1,317 citations


Journal ArticleDOI
TL;DR: The preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties, and the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies.
Abstract: The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells, providing unique opportunities for anticancer therapeutic intervention. NVP-BEZ235 is an imidazo[4,5-c]quinoline derivative that inhibits PI3K and mTOR kinase activity by binding to the ATP-binding cleft of these enzymes. In cellular settings using human tumor cell lines, this molecule is able to effectively and specifically block the dysfunctional activation of the PI3K pathway, inducing G(1) arrest. The cellular activity of NVP-BEZ235 translates well in in vivo models of human cancer. Thus, the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies. Ex vivo pharmacokinetic/pharmacodynamic analyses of tumor tissues showed a time-dependent correlation between compound concentration and PI3K/Akt pathway inhibition. Collectively, the preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties. NVP-BEZ235 is currently in phase I clinical trials.

1,127 citations


Journal ArticleDOI
TL;DR: The use of an Ly6G‐specific mAb, 1A8, as an alternative means to deplete neutrophils offers advantages over the use of RB6‐8C5, as it preserves non‐neutrophil Gr‐1+ cells depleted by the anti‐Gr‐1 antibody.
Abstract: The anti-granulocyte receptor-1 (Gr-1) mAb, RB6-8C5, has been used extensively to deplete neutrophils in mice and to investigate the role of these cells in host defense. RB6-8C5 binds to Ly6G, which is present on neutrophils, and to Ly6C, which is expressed on neutrophils, dendritic cells, and subpopulations of lymphocytes and monocytes. It is thus likely that in vivo administration of RB6-8C5 may deplete not only neutrophils but also other Gr-l+ (Ly6C+) cells. This study describes the use of an Ly6G-specific mAb, 1A8, as an alternative means to deplete neutrophils. In vivo administration of RB6-8C5 reduced blood neutrophils and Gr-1+ monocytes, whereas administration of 1A8 reduced blood neutrophils but not Gr-1+ monocytes. Plasma TNF-alpha in endotoxemia was increased 20-fold by RB6-8C5 pretreatment and fourfold by 1A8 pretreatment. In a wound model, pretreatment with either antibody decreased wound neutrophils and macrophages. TNF-alpha staining in brefeldin-treated wound leukocytes was increased by pretreatment with RB6-8C5, but not 1A8. Neutrophil depletion with 1A8 offers advantages over the use of RB6-8C5, as it preserves non-neutrophil Gr-1+ cells depleted by the anti-Gr-1 antibody. The loss of non-neutrophil Gr-1+ populations in RB6-8C5-treated animals is associated with increased TNF-alpha responses, suggesting these cells may function to suppress TNF-alpha production.

1,007 citations


Journal ArticleDOI
01 Jun 2008-Brain
TL;DR: In the Alzheimer's disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [3H]PiB binding, insoluble Aβ peptide levels, 6-CN-PiB- and Aβ plaque load, but not with measures of NFT.
Abstract: The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to β-pleated sheet aggregates of the amyloid-β (Aβ) peptide in vitro . The in vivo retention of PiB in brains of people with Alzheimer's disease shows a regional distribution that is very similar to distribution of Aβ deposits observed post-mortem. However, the basis for regional variations in PiB binding in vivo , and the extent to which it binds to different types of Aβ-containing plaques and tau-containing neurofibrillary tangles (NFT), has not been thoroughly investigated. The present study examined 28 clinically diagnosed and autopsy-confirmed Alzheimer's disease subjects, including one Alzheimer's disease subject who had undergone PiB-PET imaging 10 months prior to death, to evaluate region- and substrate-specific binding of the highly fluorescent PiB derivative 6-CN-PiB. These data were then correlated with region-matched Aβ plaque load and peptide levels, [3H]PiB binding in vitro , and in vivo PET retention levels. We found that in Alzheimer's disease brain tissue sections, the preponderance of 6-CN-PiB binding is in plaques immunoreactive to either Aβ42 or Aβ40, and to vascular Aβ deposits. 6-CN-PiB labelling was most robust in compact/cored plaques in the prefrontal and temporal cortices. While diffuse plaques, including those in caudate nucleus and presubiculum, were less prominently labelled, amorphous Aβ plaques in the cerebellum were not detectable with 6-CN-PiB. Only a small subset of NFT were 6-CN-PiB positive; these resembled extracellular ‘ghost’ NFT. In Alzheimer's disease brain tissue homogenates, there was a direct correlation between [3H]PiB binding and insoluble Aβ peptide levels. In the Alzheimer's disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [3H]PiB binding, insoluble Aβ peptide levels, 6-CN-PiB- and Aβ plaque load, but not with measures of NFT. These results demonstrate, in a typical Alzheimer's disease brain, that PiB binding is highly selective for insoluble (fibrillar) Aβ deposits, and not for neurofibrillary pathology. The strong direct correlation of in vivo PiB retention with region-matched quantitative analyses of Aβ plaques in the same subject supports the validity of PiB-PET imaging as a method for in vivo evaluation of Aβ plaque burden.

889 citations


Journal ArticleDOI
TL;DR: Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFn-α/β and IFN-λ to be compared.
Abstract: Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-alpha/beta (type I IFN) and IFN-lambda (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-alpha/beta and IFN-lambda systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-lambda. In the brain, IFN-alpha/beta was readily produced after infection with various RNA viruses, whereas expression of IFN-lambda was low in this organ. In the liver, virus infection induced the expression of both IFN-alpha/beta and IFN-lambda genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-alpha/beta and IFN-lambda to be compared. The response to IFN-lambda correlated with expression of the alpha subunit of the IFN-lambda receptor (IL-28R alpha). The IFN-lambda response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-lambda in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-alpha/beta was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-lambda system probably evolved to specifically protect epithelia. IFN-lambda might contribute to the prevention of viral invasion through skin and mucosal surfaces.

662 citations


Journal ArticleDOI
TL;DR: A new model for melanoma progression is presented that accounts for transcription signature plasticity and provides a more rational context for explaining observed melanoma biology, and challenge previous models of melan cancer progression that evoke one-way changes in gene expression.
Abstract: Metastatic melanoma represents a complex and heterogeneous disease for which there are no therapies to improve patient survival. Recent expression profiling of melanoma cell lines identified two transcription signatures, respectively, corresponding with proliferative and invasive cellular phenotypes. A model derived from these findings predicts that in vivo melanoma cells may switch between these states. Here, DNA microarray–characterized cell lines were subjected to in vitro characterization before s.c. injection into immunocompromised mice. Tumor growth rates were measured and postexcision samples were assessed by immunohistochemistry to identify invasive and proliferative signature cells. In vitro tests showed that proliferative signature melanoma cells are faster growing but less motile than invasive signature cells. In vivo proliferative signature cells initiated tumor growth in 14 ± 3 days postinjection. By comparison, invasive signature cells required a significantly longer ( P in vivo likely regulated by local microenvironmental conditions. Our findings challenge previous models of melanoma progression that evoke one-way changes in gene expression. We present a new model for melanoma progression that accounts for transcription signature plasticity and provides a more rational context for explaining observed melanoma biology. [Cancer Res 2008;68(3):650–6]

662 citations


Journal ArticleDOI
15 Feb 2008-Science
TL;DR: A shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments is proposed.
Abstract: We propose a shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments.

581 citations


Journal ArticleDOI
09 May 2008-Science
TL;DR: A reaction-diffusion model of the MinD and MinE dynamics is presented that accounts for the experimental observations and also captures the in vivo oscillations and formed planar surface waves on a flat membrane in vitro.
Abstract: In the bacterium Escherichia coli, the Min proteins oscillate between the cell poles to select the cell center as division site. This dynamic pattern has been proposed to arise by self-organization of these proteins, and several models have suggested a reaction-diffusion type mechanism. Here, we found that the Min proteins spontaneously formed planar surface waves on a flat membrane in vitro. The formation and maintenance of these patterns, which extended for hundreds of micrometers, required adenosine 5'-triphosphate (ATP), and they persisted for hours. We present a reaction-diffusion model of the MinD and MinE dynamics that accounts for our experimental observations and also captures the in vivo oscillations.

517 citations


Journal ArticleDOI
TL;DR: The genetically encoded calcium indicator TN-XXL allows repeated imaging of response properties from individual, identified neurons in vivo, which will be crucial for gaining new insights into cellular mechanisms of plasticity, regeneration and disease.
Abstract: Neurons in the nervous system can change their functional properties over time. At present, there are no techniques that allow reliable monitoring of changes within identified neurons over repeated experimental sessions. We increased the signal strength of troponin C-based calcium biosensors in the low-calcium regime by mutagenesis and domain rearrangement within the troponin C calcium binding moiety to generate the indicator TN-XXL. Using in vivo two-photon ratiometric imaging, we show that TN-XXL exhibits enhanced fluorescence changes in neurons of flies and mice. TN-XXL could be used to obtain tuning curves of orientation-selective neurons in mouse visual cortex measured repeatedly over days and weeks. Thus, the genetically encoded calcium indicator TN-XXL allows repeated imaging of response properties from individual, identified neurons in vivo, which will be crucial for gaining new insights into cellular mechanisms of plasticity, regeneration and disease.

Journal ArticleDOI
TL;DR: It is shown that tenovins act through inhibition of the protein-deacetylating activities of SirT1 and SirT2, two important members of the sirtuin family, and underscores the utility of these compounds as biological tools for the study of sIRTuin function as well as their potential therapeutic interest.

Journal ArticleDOI
TL;DR: It is demonstrated that in vitro transporter assays help in understanding the role of P-glycoprotein-mediated efflux activity in determining the disposition of CNS drugs in vivo, and the transwell assay is a valuable in vitro assay to evaluate human P-gp interaction with compounds for assessing brain penetration of new chemical entities to treat CNS disorders.
Abstract: Thirty-one structurally diverse marketed central nervous system (CNS)-active drugs, one active metabolite, and seven non-CNS-active compounds were tested in three P-glycoprotein (P-gp) in vitro assays: transwell assays using MDCK, human MDR1-MDCK, and mouse Mdr1a-MDCK cells, ATPase, and calcein AM inhibition. Additionally, the permeability for these compounds was measured in two in vitro models: parallel artificial membrane permeation assay and apical-to-basolateral apparent permeability in MDCK. The exposure of the same set of compounds in brain and plasma was measured in P-gp knockout (KO) and wild-type (WT) mice after subcutaneous administration. One drug and its metabolite, risperidone and 9-hydroxyrisperidone, of the 32 CNS compounds, and 6 of the 7 non-CNS drugs were determined to have positive efflux using ratio of ratios in MDR1-MDCK versus MDCK transwell assays. Data from transwell studies correlated well with the brain-to-plasma area under the curve ratios between P-gp KO and WT mice for the 32 CNS compounds. In addition, 3300 Pfizer compounds were tested in MDR1-MDCK and Mdr1a-MDCK transwell assays, with a good correlation (R(2) = 0.92) between the efflux ratios in human MDR1-MDCK and mouse Mdr1a-MDCK cells. Permeability data showed that the majority of the 32 CNS compounds have moderate to high passive permeability. This work has demonstrated that in vitro transporter assays help in understanding the role of P-gp-mediated efflux activity in determining the disposition of CNS drugs in vivo, and the transwell assay is a valuable in vitro assay to evaluate human P-gp interaction with compounds for assessing brain penetration of new chemical entities to treat CNS disorders.

Journal ArticleDOI
TL;DR: These c(RGDyK)-MC-Fe3O4 NPs accumulate preferentially in the integrin alphavbeta3-rich tumor area, which is readily tracked by MRI.
Abstract: We report a direct synthesis of ultrasmall c(RGDyK) peptide-coated Fe3O4 NPs (<10 nm in hydrodynamic diameter) and demonstrate their in vivo tumor-specific targeting capability. The Fe3O4 NPs are synthesized by thermal decomposition of iron pentacarbonyl in the presence of 4-methylcatechol (4-MC), and the peptide is coupled to the nanoparticles through 4-MC via Mannich reaction. The c(RGDyK)-MC-Fe3O4 NPs have an overall diameter of ∼8.4 nm and are stable in physiological conditions. When administrated intravenously, these c(RGDyK)-MC-Fe3O4 NPs accumulate preferentially in the integrin αvβ3-rich tumor area, which are readily tracked by MRI.


Journal ArticleDOI
TL;DR: The factors determining protein 3-nitrotyrosine formation, the functional and biological outcome associated with protein tyrosine nitration, and the fate of the nitrated proteins are analyzed.

Journal ArticleDOI
TL;DR: It is suggested that tumor-targeting ligands function primarily to increase intracellular uptake of the nanocomplex and do not influence tumor localization, but other reports indicate that they do play a role in the accumulation in the tumor.

Journal ArticleDOI
TL;DR: PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, resulting in robust antitumor activity.
Abstract: Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.

Journal ArticleDOI
TL;DR: A stepwise development of a nanoparticle-based targeted delivery system for in vitro and in vivo therapeutic application in pancreatic cancer and it is confirmed that the inhibition of tumor growth was due to targeted delivery.
Abstract: One of the key challenges in anticancer therapy is the toxicity and poor bioavailability of the anticancer drugs. Nanotechnology can play a pivotal role by delivering drugs in a targeted fashion to the malignant cells that will reduce the systemic toxicity of the anticancer drug. In this report, we show a stepwise development of a nanoparticle-based targeted delivery system for in vitro and in vivo therapeutic application in pancreatic cancer. In the first part of the study, we have shown the fabrication and characterization of the delivery system containing gold nanoparticle as a delivery vehicle, cetuximab as a targeting agent, and gemcitabine as an anticancer drug for in vitro application. Nanoconjugate was first characterized physico-chemically. In vitro targeting efficacy, tested against three pancreatic cancer cell lines (PANC-1, AsPC-1, and MIA Paca2) with variable epidermal growth factor receptor (EGFR) expression, showed that gold uptake correlated with EGFR expression. In the second part, we showed the in vivo therapeutic efficacy of the targeted delivery system. Administration of this targeted delivery system resulted in significant inhibition of pancreatic tumor cell proliferation in vitro and orthotopic pancreatic tumor growth in vivo. Tumor progression was monitored noninvasively by measuring bioluminescence of the implanted tumor cells. Pharmacokinetic experiments along with the quantitation of gold both in vitro and in vivo further confirmed that the inhibition of tumor growth was due to targeted delivery. This strategy could be used as a generalized approach for the treatment of a variety of cancers characterized by overexpression of EGFR.

Journal ArticleDOI
Xiaoxiao He1, Hailong Nie1, Kemin Wang1, Weihong Tan1, Xu Wu1, Pengfei Zhang1 
TL;DR: In vivo real-time imaged dominant signal in bladder and urine excretion studies revealed that all three types of i.v.-injected SiNPs with a size of approximately 45 nm were partly excreted through the renal excretion route.
Abstract: The biodistribution and urinary excretion of different surface-modified silica nanoparticles (SiNPs) in mice were investigated in situ using an in vivo optical imaging system. Three types of surface-modified SiNPs, including OH-SiNPs, COOH-SiNPs, and PEG-SiNPs with a size of ∼45 nm, have been prepared with RuBPY doped for imaging purposes. Intravenous (iv) injection of these SiNPs followed by fluorescence tracing in vivo using the Maestro in vivo imaging system indicated that OH-SiNPs, COOH-SiNPs, and PEG-SiNPs were all cleared from the systemic blood circulation, but that both the clearance time and subsequent biological organ deposition were dependent on the surface chemical modification of the SiNPs. Thus, for instance, the PEG-SiNPs exhibited relatively longer blood circulation times and lower uptake by the reticuloendothelial system organs than OH-SiNPs and COOH-SiNPs. More interestingly, in vivo real-time imaged dominant signal in bladder and urine excretion studies revealed that all three types of ...

Journal ArticleDOI
TL;DR: ART and DHA have significant anticancer effects against human hepatoma cells, regardless of p53 status, with minimal effects on normal cells, indicating that they are promising therapeutics for human hepat cancer used alone or in combination with other therapies.
Abstract: Purpose: ART and its derivatives, clinically used antimalarial agents, have recently shown antitumor activities. However, the mechanisms underlying these activities remain unclear. This study was designed to determine their antitumor efficacy and underlying mechanisms of action in human hepatoma cells. Experimental Design: The in vitro cytotoxicities of ART, DHA, artemether, and artesunate were compared in human hepatoma cells, HepG2 (p53 wild-type), Huh-7 and BEL-7404 (p53 mutant), and Hep3B (p53 null), and a normal human liver cell line, 7702. Based on their activity and specificity, ART and DHA were further investigated for their in vitro and in vivo antitumor effects and their effects on the protein expression of genes associated with cell proliferation and apoptosis. Results: ART and DHA exerted the greatest cytotoxicity to hepatoma cells but significantly lower cytotoxicity to normal liver cells. The compounds inhibited cell proliferation, induced G1-phase arrest, decreased the levels of cyclin D1, cyclin E, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2F1, and increased the levels of Cip1/p21 and Kip1/p27. They induced apoptosis, activated caspase-3, increased the Bax/Bcl-2 ratio and poly(ADP-ribose) polymerase, and down-regulated MDM2. In mice bearing HepG2 and Hep3B xenograft tumors, ART and DHA inhibited tumor growth and modulated tumor gene expression consistent with in vitro observations. DHA increased the efficacy of the chemotherapeutic agent gemcitabine. Conclusions: ART and DHA have significant anticancer effects against human hepatoma cells, regardless of p53 status, with minimal effects on normal cells, indicating that they are promising therapeutics for human hepatoma used alone or in combination with other therapies.

Journal ArticleDOI
25 Jul 2008-ACS Nano
TL;DR: It was found that cells targeted with the immuno Au nanocages responded immediately to laser irradiation and that the cellular damage was irreversible at power densities greater than 1.6 W/cm(2), and the percentage of dead cells increased with increasing exposure time up to 5 min and then became steady.
Abstract: Gold nanocages with an average edge length of 65 +/- 7 nm and a strong absorption peak at 800 nm were conjugated with monoclonal antibodies (anti-HER2) to target breast cancer cells (SK-BR-3) through the epidermal growth factor receptor (in this case, HER2), which is overexpressed on the surfaces of the cells. Both the number of immuno Au nanocages immobilized per cell and the photothermal therapeutic effect were quantified using flow cytometry. The targeted cells were irradiated with a pulsed near-infrared laser, and by varying the power density, the duration of laser exposure, and the time of response after irradiation, we were able to optimize the treatment conditions to achieve effective destruction of the cancer cells. We found that cells targeted with the immuno Au nanocages responded immediately to laser irradiation and that the cellular damage was irreversible at power densities greater than 1.6 W/cm(2). The percentage of dead cells increased with increasing exposure time up to 5 min and then became steady. By quantifying the photothermal effect of immuno Au nanocages, critical information with regards to both the optimal dosage of nanocages and parameters of the laser irradiation has been garnered and will be applied to future in vivo studies.

Journal ArticleDOI
TL;DR: Results provide strong evidence for the hypothesis that ANCA are directly pathogenic by binding to PR3 which is expressed on the cell surface of primed/activated PMN.
Abstract: Apart from the diagnostic value of anti-neutrophil cytoplasmic antibodies (ANCA), their detailed characterization and that of their corresponding antigens have opened new ways for the exploration of the pathogenesis of primary systemic vasculitis. ANCA are now thought to play an important functional role via activation of phagocytic cells (e.g. polymorphonuclear neutrophils (PMN)). In this study we examined the mechanisms by which ANCA could gain access to proteinase 3 (PR3) in intact PMN, at two levels: ex vivo by analysing the presence of PR3 on the plasma membrane of PMN from patients with ANCA-associated vasculitis, and in vitro by stimulation of PMN using different cytokines, including recombinant tumour necrosis factor-alpha (rhTNF-alpha) and two forms of IL-8 (produced by monocytic and endothelial cells). Using immunocytochemical staining techniques (FACS and immunoelectronmicroscopy) PR3 has been detected on the plasma membrane of PMN from patients with active ANCA-associated vasculitis. However, this phenomenon is also seen in patients with sepsis who do not have ANCA. In addition, TNF-alpha and both forms of IL-8 act synergistically and induce a translocation of PR3 from the intragranular loci to the cell surface of PMN. These results provide strong evidence for the hypothesis that ANCA are directly pathogenic by binding to PR3 which is expressed on the cell surface of primed/activated PMN.

Journal ArticleDOI
TL;DR: Macitentan, by its tissue-targeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats, which makes it a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.
Abstract: Macitentan, also called Actelion-1 or ACT-064992 [ N -[5-(4-bromophenyl)-6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]- N ′-propylaminosulfonamide], is a new dual ETA/ETB endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ETA and ETB receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ETA receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ETB receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissue-targeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the biofilm penetration, mechanism of drug release and in vivo antimicrobial activity of a unique nanoscale liposomal formulation of amikacin designed specifically for nebulization and inhaled delivery.
Abstract: Objectives Chronic infections of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients are intractable antibiotic targets because of their biofilm mode of growth. We have investigated the biofilm penetration, mechanism of drug release and in vivo antimicrobial activity of a unique nanoscale liposomal formulation of amikacin designed specifically for nebulization and inhaled delivery. Methods Penetration of fluorescently labelled liposomes into sputum or P. aeruginosa (PA3064) biofilms was monitored by a filter assay and by epifluorescence or confocal scanning laser microscopy. Amikacin release in vitro and rat lung levels after inhalation of nebulized material were measured by fluorescence polarization immunoassay. A 14 day agar bead model of chronic Pseudomonas lung infection in rats was used to assess the efficacy of liposomal amikacin versus free aminoglycosides in the reduction of bacterial count. Results Fluorescent liposomes penetrated readily into biofilms and infected mucus, whereas larger (1 microm) fluorescent beads did not. Amikacin release from liposomes was mediated by sputum or Pseudomonas biofilm supernatants. Rhamnolipids were implicated as the major releasing factors in these supernatants, active at one rhamnolipid per several hundred lipids within the liposomes. Inhaled liposomal amikacin was released in a slow, sustained manner in normal rat lungs and was orders of magnitude more efficacious than inhaled free amikacin in infected lungs. Conclusions Penetration of biofilm and targeted, sustained release from liposomes can explain the superior in vivo efficacy of inhaled liposomal amikacin versus free drug observed in a 14 day infection model. Inhaled liposomal amikacin may represent an important therapy for chronic lung infections.

Journal ArticleDOI
TL;DR: In vitro and in vivo experiments showed that LB cell dissemination could be controlled by injection of anti-CD44 monoclonal antibodies or hyaluronidase, andLB cell accumulation in the lymph nodes is caused by enhanced migration via the afferent lymphatics rather than by accelerated proliferation within the lymph node.

Journal ArticleDOI
TL;DR: The cells grown in 3-D model are more resistant to chemotherapy than those grown in 2-D culture, suggesting the significant roles of cellular architecture, phenotypic variations, and extracellular matrix barrier to drug transport in drug efficacy.
Abstract: The efficacy of potential anticancer drugs during preclinical development is generally tested in vitro using cancer cells grown in monolayer; however, a significant discrepancy in their efficacy is observed when these drugs are evaluated in vivo. This discrepancy, in part, could be due to the three-dimensional (3-D) nature of tumors as compared to the two-dimensional (2-D) nature of monolayer cultures. Therefore, there is a need for an in vitro model that would mimic the 3-D nature of tumors. With this objective, we have developed surface-engineered, large and porous biodegradable polymeric microparticles as a scaffold for 3-D growth of cancer cells. Using the MCF-7 cell line as model breast cancer cells, we evaluated the antiproliferative effect of three anticancer drugs: doxorubicin, paclitaxel and tamoxifen in 3-D model vs in 2-D monolayer. With optimized composition of microparticles and cell culture conditions, a density of 4.5 × 106 MCF-7 cells/mg of microparticles, which is an 18-fold increase from...

Journal ArticleDOI
TL;DR: It is suggested that the isotype-selective HDAC inhibition by MGCD0103 is sufficient for antitumor activity in vivo and that further clinical investigation is warranted.
Abstract: Nonselective inhibitors of human histone deacetylases (HDAC) are known to have antitumor activity in mice in vivo, and several of them are under clinical investigation. The first of these, Vorinostat (SAHA), has been approved for treatment of cutaneous T-cell lymphoma. Questions remain concerning which HDAC isotype(s) are the best to target for anticancer activity and whether increased efficacy and safety will result with an isotype-selective HDAC inhibitor. We have developed an isotype-selective HDAC inhibitor, MGCD0103, which potently targets human HDAC1 but also has inhibitory activity against HDAC2, HDAC3, and HDAC11 in vitro. In intact cells, MGCD0103 inhibited only a fraction of the total HDAC activity and showed long-lasting inhibitory activity even upon drug removal. MGCD0103 induced hyperacetylation of histones, selectively induced apoptosis, and caused cell cycle blockade in various human cancer cell lines in a dose-dependent manner. MGCD0103 exhibited potent and selective antiproliferative activities against a broad spectrum of human cancer cell lines in vitro, and HDAC inhibitory activity was required for these effects. In vivo, MGCD0103 significantly inhibited growth of human tumor xenografts in nude mice in a dose-dependent manner and the antitumor activity correlated with induction of histone acetylation in tumors. Our findings suggest that the isotype-selective HDAC inhibition by MGCD0103 is sufficient for antitumor activity in vivo and that further clinical investigation is warranted.

Journal ArticleDOI
TL;DR: Results highlight the utility of pooled shRNA screens for identifying genetic determinants of chemotherapy response and suggest strategies for improving the effectiveness of topoisomerase poisons in the clinic.
Abstract: Topoisomerase poisons are chemotherapeutic agents that are used extensively for treating human malignancies. These drugs can be highly effective, yet tumors are frequently refractory to treatment or become resistant upon tumor relapse. Using a pool-based RNAi screening approach and a well characterized mouse model of lymphoma, we explored the genetic basis for heterogeneous responses to topoisomerase poisons in vitro and in vivo. These experiments identified Top2A expression levels as major determinants of response to the topoisomerase 2 poison doxorubicin and showed that suppression of Top2A produces resistance to doxorubicin in vitro and in vivo. Analogously, using a targeted RNAi approach, we demonstrated that suppression of Top1 produces resistance to the topoisomerase 1 poison camptothecin yet hypersensitizes cancer cells to doxorubicin. Importantly, lymphomas relapsing after treatment display spontaneous changes in topoisomerase levels as predicted by in vitro gene knockdown studies. These results highlight the utility of pooled shRNA screens for identifying genetic determinants of chemotherapy response and suggest strategies for improving the effectiveness of topoisomerase poisons in the clinic.

Journal ArticleDOI
TL;DR: It is shown that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs, and Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro.
Abstract: Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.