scispace - formally typeset
Search or ask a question

Showing papers on "Promyelocytic leukemia protein published in 2006"


Journal ArticleDOI
TL;DR: It is demonstrated that PML contains a SUMO binding motif that is independent of its SUMOylation sites and is surprisingly necessary for PML-NB formation, and it is proposed that the PML RING domain is critical forPML SUMoylation and PML -NB formation.

475 citations


Journal ArticleDOI
TL;DR: PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0, and it is demonstrated that depletion of PML increases both gene expression and plaque formation by an I CP0-negative HSV-1 mutant, while having no effect on wild-type HSVs.
Abstract: Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.

347 citations


Journal ArticleDOI
28 Jul 2006-Cell
TL;DR: It is shown that CK2 regulates PML protein levels by promoting its ubiquitin-mediated degradation dependent on direct phosphorylation at Ser517, Consequently, PML mutants that are resistant to CK2 phosphorylated display increased tumor-suppressive functions.

285 citations


Journal ArticleDOI
TL;DR: Results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections, and that the depletion of PML augments the initiation of viral IE gene expression.
Abstract: Several viruses, including human cytomegalovirus (HCMV), encode proteins that colocalize with a cellular subnuclear structure known as ND10. Since only viral DNA deposited at ND10 initiates transcription, ND10 structures were hypothesized to be essential for viral replication. On the other hand, interferon treatment induces an up-regulation of ND10 structures and viruses have evolved polypeptides that disperse the dot-like accumulation of ND10 proteins, suggesting that ND10 could also be part of an intrinsic defense mechanism. In order to obtain evidence for either a proviral or an antiviral function of ND10, we generated primary human fibroblasts with a stable, short interfering RNA-mediated knockdown (kd) of PML. In these cells, other ND10-associated proteins like hDaxx showed a diffuse nuclear distribution. Interestingly, we observed that HCMV infection induced the de novo formation of ND10-like hDaxx and Sp100 accumulations that colocalized with IE2 and were disrupted, in the apparent absence of PML, in an IE1-dependent manner during the first hours after infection. Furthermore, infection of PML-kd cells with wild-type HCMV at a low multiplicity of infection resulted in enhanced replication. In particular, a significantly increased plaque formation was detected, suggesting that more cells are able to support initiation of replication in the absence of PML. While there was no difference in viral DNA uptake between PML-kd and control cells, we observed a considerable increase in the number of immediate-early (IE) protein-positive cells, indicating that the depletion of PML augments the initiation of viral IE gene expression. These results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections.

224 citations


Journal ArticleDOI
TL;DR: It is argued that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.
Abstract: Small ubiquitin-related modifier (SUMO) processing and deconjugation are mediated by sentrin-specific proteases/ubiquitin-like proteases (SENP/Ulps). We show that SUMO-specific protease 1 (SUSP1), a mammalian SENP/Ulp, localizes within the nucleoplasm. SUSP1 depletion within cell lines expressing enhanced green fluorescent protein (EGFP) fusions to individual SUMO paralogues caused redistribution of EGFP-SUMO2 and -SUMO3, particularly into promyelocytic leukemia (PML) bodies. Further analysis suggested that this change resulted primarily from a deficit of SUMO2/3-deconjugation activity. Under these circumstances, PML bodies became enlarged and increased in number. We did not observe a comparable redistribution of EGFP-SUMO1. We have investigated the specificity of SUSP1 using vinyl sulfone inhibitors and model substrates. We found that SUSP1 has a strong paralogue bias toward SUMO2/3 and that it acts preferentially on substrates containing three or more SUMO2/3 moieties. Together, our findings argue that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.

156 citations


Journal ArticleDOI
TL;DR: Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components.
Abstract: Promyelocytic leukemia (PML) has been implicated in a variety of functions, including control of TP53 function and modulation of cellular senescence. Sumolated PML is the organizer of mature PML bodies, recruiting a variety of proteins onto these nuclear domains. The PML gene is predicted to encode a variety of protein isoforms. Overexpression of only one of them, PML-IV, promotes senescence in human diploid fibroblasts, whereas PML-III was proposed to specifically interact with the centrosome. We show that all PML isoform proteins are expressed in cell lines or primary cells. Unexpectedly, we found that PML-III, PML-IV, and PML-V are quantitatively minor isoforms compared with PML-I/II and could not confirm the centrosomal targeting of PML-III. Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components. Only the isoform-specific sequences of PML-I and PML-V are highly conserved between man and mouse. That PML-I contains all conserved exons and is more abundantly expressed than PML-IV suggests that it is a critical contributor to PML function(s).

154 citations


Journal ArticleDOI
TL;DR: The development of the F64L/S65T/T203Y/L231H GFP mutant (E2GFP) as an effective ratiometric pH indicator for intracellular studies and the possibility to target specific subcellular compartments such as nucleoli and nuclear promyelocytic leukemia bodies is shown.

139 citations


Journal ArticleDOI
TL;DR: The findings that chromatin-remodelling proteins fail to accumulate around satellite DNA in PML-deficient NB4 cells support a central role for PML protein in this cellular function.
Abstract: We have recently demonstrated that heterochromatin HP1 proteins are aberrantly distributed in lymphocytes of patients with immunodeficiency, centromeric instability and facial dysmorphy (ICF) syndrome. The three HP1 proteins accumulate in one giant body over the 1qh and 16qh juxtacentromeric heterochromatins, which are hypomethylated in ICF. The presence of PML (promyelocytic leukaemia) protein within this body suggests it to be a giant PML nuclear body (PML-NB). The structural integrity of PML-NBs is of major importance for normal cell functioning. Nevertheless, the structural organisation and the functions of these nuclear bodies remain unclear. Here, we take advantage of the large size of the giant body to demonstrate that it contains a core of satellite DNA with proteins being organised in ordered concentric layers forming a sphere around it. We extend these results to normal PML-NBs and propose a model for the general organisation of these structures at the G2 phase. Moreover, based on the presence of satellite DNA and the proteins HP1, BRCA1, ATRX and DAXX within the PML-NBs, we propose that these structures have a specific function: the re-establishment of the condensed heterochromatic state on late-replicated satellite DNA. Our findings that chromatin-remodelling proteins fail to accumulate around satellite DNA in PML-deficient NB4 cells support a central role for PML protein in this cellular function.

135 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the L2 protein is able to interact with the microtubule network via the motor protein dynein, indicating that this interaction mediates the minus-end-directed transport of the viral genome along microtubules towards the nucleus.
Abstract: Papillomaviruses enter cells via endocytosis (H. C. Selinka et al., Virology 299:279-287, 2002). After egress from endosomes, the minor capsid protein L2 accompanies the viral DNA to the nucleus and subsequently to the subnuclear promyelocytic leukemia protein bodies (P. M. Day et al., Proc. Natl. Acad. Sci. USA 101:14252-14257, 2004), suggesting that this protein may be involved in the intracytoplasmic transport of the viral genome. We now demonstrate that the L2 protein is able to interact with the microtubule network via the motor protein dynein. L2 protein was found attached to microtubules after uncoating of incoming human papillomavirus pseudovirions. Based on immunofluorescence and coimmunoprecipitation analyses, the L2 region interacting with dynein is mapped to the C-terminal 40 amino acids. Mutations within this region abrogating the L2/dynein interaction strongly reduce the infectivity of pseudoviruses, indicating that this interaction mediates the minus-end-directed transport of the viral genome along microtubules towards the nucleus.

126 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PML nuclear bodies partition via mitotic accumulations of PML protein (MAPPs), which are distinct from PMLnuclear bodies in their dynamics, biochemistry and structure.
Abstract: Although the mechanism of chromosomal segregation is well known, it is unclear how other nuclear compartments such as promyelocytic leukemia (PML) nuclear bodies partition during mitosis and re-form in G1. We demonstrate that PML nuclear bodies partition via mitotic accumulations of PML protein (MAPPs), which are distinct from PML nuclear bodies in their dynamics, biochemistry and structure. During mitosis PML nuclear bodies lose biochemical components such as SUMO-1 and Sp100. We demonstrate that MAPPs are also devoid of Daxx and these biochemical changes occur prior to chromatin condensation and coincide with the loss of nuclear membrane integrity. MAPPs are highly mobile, yet do not readily exchange PML protein as demonstrated by fluorescence recovery after photo-bleaching (FRAP). A subset of MAPPs remains associated with mitotic chromosomes, providing a possible nucleation site for PML nuclear body formation in G1. As the nuclear envelope reforms in late anaphase, these nascent PML nuclear bodies accumulate components sequentially, for example Sp100 and SUMO-1 before Daxx. After cytokinesis, MAPPs remain in the cytoplasm long after the reincorporation of splicing components and their disappearance coincides with new PML nuclear body formation even in the absence of new protein synthesis. The PML protein within MAPPs is not degraded during mitosis but is recycled to contribute to the formation of new PML nuclear bodies in daughter nuclei. The recycling of PML protein from one cell cycle to the next via mitotic accumulations may represent a common mechanism for the partitioning of other nuclear bodies during mitosis.

114 citations


Journal ArticleDOI
TL;DR: The results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.
Abstract: PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.

Journal ArticleDOI
TL;DR: Promyelocytic leukemia (PML) nuclear bodies have been implicated in a variety of cellular processes including apoptosis, tumour suppression, anti-viral response, DNA repair and transcriptional regulation as mentioned in this paper.
Abstract: Promyelocytic leukemia (PML) nuclear bodies have been implicated in a variety of cellular processes including apoptosis, tumour suppression, anti-viral response, DNA repair and transcriptional regulation. PML nuclear bodies are both positionally and structurally stable over extended periods of interphase. As demonstrated in this study, the structural stability is lost as cells enter S phase, evidenced both by distortions in shape and by fission and fusion events. At the end of this period of structural instability, the number of PML nuclear bodies has increased by a factor of twofold. Association of the fission products with chromatin implies that the PML nuclear bodies respond to changes in chromatin organisation or topology, and thus could play a role in monitoring genome integrity during DNA synthesis or in the continued maintenance of functional chromosomal domains prior to mitosis.

Journal ArticleDOI
TL;DR: It is shown that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system, which represent a potential therapeutic target for preventing polyQ disorders.
Abstract: The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, β-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders.

Journal ArticleDOI
TL;DR: It is indicated that the ability of the RARalpha oncoproteins to dimerize/multimerize is an essential feature required for the development of disease.

Journal ArticleDOI
TL;DR: It is demonstrated that the dimerization interface of RARalpha fusion partners is a critical element in APL pathogenesis while pointing to other features of PML for enhancing penetrance and progression.

Journal ArticleDOI
TL;DR: The data show that the interaction between Orf3 and PML II is necessary for ND10 rearrangement to occur, and Orf 3 was shown to self-associate in vitro and in vivo, and may mediate the formation of nuclear tracks in vivo.
Abstract: Nuclear domain 10 (ND10s), or promyelocytic leukemia protein (PML) nuclear bodies, are spherical nuclear structures that require PML proteins for their formation. Many viruses target these structures during infection. The E4 Orf3 protein of adenovirus 5 (Ad5) rearranges ND10s, causing PML to colocalize with Orf3 in nuclear tracks or fibers. There are six different PML isoforms (I to VI) present at ND10s, all sharing a common N terminus but with structural differences at their C termini. In this study, PML II was the only one of these six isoforms that was found to interact directly and specifically with Ad5 E4 Orf3 in vitro and in vivo; these results define a new Orf3 activity. Three of a series of 18 mutant Orf3 proteins were unable to interact with PML II; these were also unable to cause ND10 rearrangement. Moreover, in PML-null cells that contained neoformed ND10s comprising a single PML isoform, only ND10s formed of PML II were rearranged by Orf3. These data show that the interaction between Orf3 and PML II is necessary for ND10 rearrangement to occur. Finally, Orf3 was shown to self-associate in vitro. This activity was absent in mutant Orf3 proteins that were unable to form tracks and to bind PML II. Thus, Orf3 oligomerization may mediate the formation of nuclear tracks in vivo and may also be important for PML II binding.

Journal ArticleDOI
TL;DR: PML-NBs have the capacity to accommodate DNA metabolic activities that are associated with processing of damaged DNA, and it is found that caffeine and the poly(ADP-ribose) polymerase (PARP) inhibitor NU1027 enhanced UV-induced recruitment of ssDNA to PML- NBs.
Abstract: The promyelocytic leukemia protein (PML) participates in several cellular functions, including transcriptional regulation, apoptosis and maintenance of genomic stability. A key feature of this protein is its ability to induce the assembly of nuclear compartments termed PML-nuclear bodies (PML-NBs). Here we show that these nuclear structures recruit single-stranded DNA (ssDNA) molecules in response to exogenous DNA damage. ssDNA was readily detected in PML-NBs within 1 hour following exposure of cells to UV light. Confocal real-time imaging of cells expressing YFP-tagged PML did not reveal de novo formation of new PML-NBs following UV-irradiation, which shows that ssDNA focus formation occurred within pre-existing PML-NBs. Moreover, siRNA-mediated depletion of PML prevented ssDNA focus formation and sensitized cells to UV-induced apoptosis. PML-dependent ssDNA focus formation was found to be particularly efficient during S-phase of the cell cycle, and PML-depleted cells became retarded in S-phase upon growth in the presence of etoposide. In addition, we found that caffeine and the poly(ADP-ribose) polymerase (PARP) inhibitor NU1027 enhanced UV-induced recruitment of ssDNA to PML-NBs. Together, our results show that PML-NBs have the capacity to accommodate DNA metabolic activities that are associated with processing of damaged DNA.

Journal ArticleDOI
TL;DR: The data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function, which is a key step for the formation of a particular subnuclear organization.

Journal ArticleDOI
23 Mar 2006-Oncogene
TL;DR: The results underscore the critical relevance of the X moiety in dictating the biology of the disease and the activity of the APL fusion oncoprotein.
Abstract: Recurrent chromosomal translocations involving the RAR alpha locus on chromosome 17 are the hallmark of acute promyelocytic leukemia (APL). The RAR alpha gene fuses to variable partners (PML, PLZF, NPM, NuMA and STAT5B: X genes) leading to the expression of APL-specific fusion proteins with identical RAR alpha moieties. To analyse whether the variable X moiety could affect the activity of the fusion protein in vivo, we generated and characterized, on a comparative basis, NPM/RAR alpha transgenic mice (TM) in which the fusion gene is expressed under the control of a human Cathepsin G (hCG) minigene. We compared the features of the leukemia observed in these TM with those in hCG-PML/RAR alpha and hCG-PLZF/RAR alpha TM. In all three transgenic models, leukemia developed after a variably long latency, with variable penetrance. However, the three leukemias displayed distinct cytomorphological features. hCG-NPM/RAR alpha leukemic cells resembled monoblasts. This phenotype contrasts with what was observed in the hCG-PML/RAR alpha TM model in which the leukemic phase was characterized by the proliferation of promyelocytic blasts. Similarly, hCG-PLZF/RAR alpha TM displayed a different phenotype where terminally differentiated myeloid cells predominated. Importantly, the NPM/RAR alpha oncoprotein was found to localize in the nucleolus, unlike PML/RAR alpha and PLZF/RAR alpha, thus possibly interfering with the normal function of NPM. Similarly to what was observed in human APL patients, we found that NPM/RAR alpha and PML/RAR alpha, but not PLZF/RAR alpha leukemia, was responsive to all-trans retinoic acid (ATRA) or As2O3 treatments. Taken together, our results underscore the critical relevance of the X moiety in dictating the biology of the disease and the activity of the APL fusion oncoprotein.

Journal ArticleDOI
TL;DR: It is demonstrated that PML interacts with Chk2 and activates Chk 2 by mediating its autophosphorylation step, an essential step for Chk1 activity that occurs after phosphorylation by the upstream kinase ATM (ataxia telangiectasia-mutated).

Journal ArticleDOI
18 May 2006-Oncogene
TL;DR: Findings point toward a potential function of PML and PML:RARα as SUMO E3 enzymes or E3 regulators, and suggest that fusion of RARα to PML may affect this activity.
Abstract: The promyelocytic leukemia gene was first identified through its fusion to the gene encoding the retinoic acid receptor alpha (RARα) in acute promyelocytic leukemia (APL) patients. The promyelocytic leukemia gene product (PML) becomes conjugated in vivo to the small ubiquitin-like protein SUMO-1, altering its behavior and capacity to recruit other proteins to PML nuclear bodies (PML-NBs). In the NB4 cell line, which was derived from an APL patient and expresses PML:RARα, we observed a retinoic acid-dependent change in the modification of specific proteins by SUMO-1. To dissect the interaction of PML with the SUMO-1 modification pathway, we used the budding yeast Saccharomyces cerevisiae as a model system through expression of PML and human SUMO-1 (hSUMO-1). We found that PML stimulated hSUMO-1 modification in yeast, in a manner that was dependent upon PML's RING-finger domain. PML:RARα also stimulated hSUMO-1 conjugation in yeast. Interestingly, however, PML and PML:RARα differentially complemented yeast Smt3p conjugation pathway mutants. These findings point toward a potential function of PML and PML:RARα as SUMO E3 enzymes or E3 regulators, and suggest that fusion of RARα to PML may affect this activity.

Journal ArticleDOI
TL;DR: It is proposed that CRAG is a modulator of PML function and dynamics in ROS signaling and is protectively involved in the pathogenesis of polyglutamine diseases.
Abstract: Polyglutamine diseases are inherited neurodegenerative diseases caused by the expanded polyglutamine proteins (polyQs). We have identified a novel guanosine triphosphatase (GTPase) named CRAG that contains a nuclear localization signal (NLS) sequence and forms nuclear inclusions in response to stress. After ultraviolet irradiation, CRAG interacted with and induced an enlarged ring-like structure of promyelocytic leukemia protein (PML) body in a GTPase-dependent manner. Reactive oxygen species (ROS) generated by polyQ accumulation triggered the association of CRAG with polyQ and the nuclear translocation of the CRAG–polyQ complex. Furthermore, CRAG promoted the degradation of polyQ at PML/CRAG bodies through the ubiquitin–proteasome pathway. CRAG knockdown by small interfering RNA in neuronal cells consistently blocked the nuclear translocation of polyQ and enhanced polyQ-mediated cell death. We propose that CRAG is a modulator of PML function and dynamics in ROS signaling and is protectively involved in the pathogenesis of polyglutamine diseases.

Journal ArticleDOI
TL;DR: It is suggested that SAP25 is a novel core component of the mSin3 corepressor complex whose subcellular location is regulated by PML.
Abstract: The transcriptional corepressor mSin3 is associated with histone deacetylases (HDACs) and is utilized by many DNA-binding transcriptional repressors. We have cloned and characterized a novel mSin3A-binding protein, SAP25. SAP25 binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. SAP25 is required for mSin3A-mediated, but not N-CoR-mediated, repression. SAP25 is a nucleocytoplasmic shuttling protein, actively exported from the nucleus by a CRM1-dependent mechanism. A fraction of SAP25 is located in promyelocytic leukemia protein (PML) nuclear bodies, and PML induces a striking nuclear accumulation of SAP25. An isotope-coded affinity tag quantitative proteomic analysis of the SAP25 complex revealed that SAP25 is associated with several components of the mSin3 complex, nuclear export machinery, and regulators of transcription and cell cycle. These results suggest that SAP25 is a novel core component of the mSin3 corepressor complex whose subcellular location is regulated by PML.

Journal ArticleDOI
TL;DR: It is demonstrated that transient transcription assays are sensitive to the subnuclear localization of the transgene plasmid, and that when PML NB components are artificially tethered to reporter plasmids, the PMLNB contributes to the regulation of the tethered DNA in a promoter-dependent manner.
Abstract: Whereas the PML protein has been reported to have both transcriptional coactivator and corepressor potential, the contribution of the PML nuclear body (PML NB) itself to transcriptional regulation is not well understood. Here we demonstrate that plasmid DNA artificially tethered to PML or the PML NB-targeting domain of Sp100 is preferentially localized to PML NBs. Using the tethering technique, we targeted a simian virus 40 promoter-driven luciferase reporter plasmid to PML NBs, resulting in the repression of the transgene transcriptional activity. Conversely, the tethering of a cytomegalovirus promoter-containing reporter plasmid resulted in activation. Targeting a minimal eukaryotic promoter did not affect its activity. The expression of targeted promoters could be modulated by altering the cellular concentration of PML NB components, including Sp100 and isoforms of the PML protein. Finally, we demonstrate that ICP0, the promiscuous herpes simplex virus transactivator, increases the level of transcriptional activation of plasmid DNA tethered to the PML NB. We conclude that when PML NB components are artificially tethered to reporter plasmids, the PML NB contributes to the regulation of the tethered DNA in a promoter-dependent manner. Our findings demonstrate that transient transcription assays are sensitive to the subnuclear localization of the transgene plasmid.

Journal ArticleDOI
TL;DR: A novel function for PML is suggested in the IFN-γ signaling pathway by inhibiting STAT-1α DNA binding and transcriptional activity in mouse embryonic fibroblasts.
Abstract: IFN-γ is an immunomodulatory cytokine and uses the STAT-1α transcription factor to mediate gene expression The promyelocytic leukemia (PML) protein regulates transcription as an activator or repressor, depending on the gene under investigation Herein, we examined the influence of PML on IFN-γ signaling, using PML wild-type (Pml+/+) and deficient (Pml−/−) mouse embryonic fibroblasts (MEF) Pml−/− MEF exhibit enhanced IFN-γ-induced STAT-1α transcriptional activity compared with Pml+/+ cells Moreover, reconstitution of PML in Pml−/− MEF reduced STAT-1α transcriptional activity to levels comparable to Pml+/+ MEF Numerous endogenous IFN-γ-regulated genes were up-regulated in Pml−/− MEF compared with Pml+/+ MEF IFN-γ-mediated STAT-1α DNA-binding activity was enhanced in Pml−/− cells compared with Pml+/+ cells Lastly, IFN-γ enhanced the formation of a PML–STAT-1α complex in the nucleus These data suggest a novel function for PML in the IFN-γ signaling pathway by inhibiting STAT-1α DNA binding and transcriptional activity

Journal ArticleDOI
TL;DR: Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic.
Abstract: The promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARalpha to inhibit RARalpha function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1-RARalpha fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARalpha mutants, as well as that of PML-RARalpha mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARalpha did act as a bona fide DN RARalpha mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARalpha mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML(-/-) and p53(-/-) compound mutants lends support to a model by which the RARalpha and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.

Journal ArticleDOI
TL;DR: It is demonstrated that the IFN-induced growth suppression of B lymphocytes requires nuclear localization of Daxx through its sumoylation and proper interactions with PML.
Abstract: Daxx has been shown to play an essential role in type I IFN-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify the molecular mechanisms of how Daxx acts on growth suppression of B lymphocytes, we examined functions of a sumoylation-defective Daxx KA mutant (Daxx K630/631A), which substituted Lys 630 and Lys 631 to Ala. Importantly, Daxx KA localized in the cytoplasm, whereas wild-type Daxx localized in the nucleus. Murine pro-B cell line Ba/F3 expressing Daxx KA revealed a resistance to the IFN-induced growth suppression. It is noteworthy that treatment with an exportin inhibitor, leptomycin B, resulted in nuclear localization of Daxx KA and recovery of the IFN-induced growth suppression in Ba/F3 cells. Moreover, Daxx KA decreased the binding potential to promyelocytic leukemia protein (PML), and overexpression of PML recruited Daxx KA into PML oncogenic domains. Notably, a Daxx-small ubiquitin-related modifier fusion protein exhibited increased nuclear localization and ability to suppress cell growth in Ba/F3 cells. These results demonstrate that the IFN-induced growth suppression of B lymphocytes requires nuclear localization of Daxx through its sumoylation and proper interactions with PML.

Journal ArticleDOI
TL;DR: Findings reveal novel insights into the molecular mechanisms contributing to APL by showing that a mutant form of PML-RARα that accumulates in the cytoplasm inhibits RA-dependent transcription and differentiation, thus suggesting that cy toplasmic localization of PMl-R ARα may contribute to transformation.

Journal ArticleDOI
TL;DR: It is reported here that CAK binds to and phosphorylates PML/RARα in actively proliferating APL cells in response to ATRA, leading to MAT1 degradation, G1 arrest, and decreased CAK phosphorylation of PML/.
Abstract: Acute promyelocytic leukemia (APL) cells express promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion protein, which leads to the blocking of APL cell differentiation. Treatment of APL with all-trans-retinoic acid (ATRA) induces disease remission by in vivo differentiation of APL cells. Differentiation requires cell cycle exit; yet how ATRA couples cell cycle exit to differentiation of APL remains largely unknown. We previously found that ATRA-induced cell differentiation accompanies ubiquitination-proteolysis of menage a trois 1 (MAT1), an assembly factor and targeting subunit of cyclin-dependent kinase (CDK)-activating kinase (CAK) that regulates G1 exit. We report here that CAK binds to and phosphorylates PML/RARα in actively proliferating APL cells. In response to ATRA, PML/RARα is dissociated from CAK, leading to MAT1 degradation, G1 arrest, and decreased CAK phosphorylation of PML/RARα. CAK phosphorylation of PML/RARα is inhibited when MAT1 levels are reduced. Both MAT1 degradation ...

Journal ArticleDOI
TL;DR: In this review, the current advances in the development of targeted therapy in acute myeloid leukemia are described.