scispace - formally typeset
Search or ask a question

Showing papers on "Prostate published in 2010"


Journal ArticleDOI
TL;DR: The data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand.
Abstract: Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (ARv567es) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, ARv567es functioned as a constitutively active receptor, increased expression of full-length AR (ARfl), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with ARv567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of ARv567es to ARfl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected ARv567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand.

713 citations


Journal ArticleDOI
30 Jul 2010-Science
TL;DR: It is shown that basal cells from primary benign human prostate tissue can initiate prostate cancer in immunodeficient mice, and this results demonstrate that histological characterization of cancers does not necessarily correlate with the cellular origins of the disease.
Abstract: Luminal cells are believed to be the cells of origin for human prostate cancer, because the disease is characterized by luminal cell expansion and the absence of basal cells. Yet functional studies addressing the origin of human prostate cancer have not previously been reported because of a lack of relevant in vivo human models. Here we show that basal cells from primary benign human prostate tissue can initiate prostate cancer in immunodeficient mice. The cooperative effects of AKT, ERG, and androgen receptor in basal cells recapitulated the histological and molecular features of human prostate cancer, with loss of basal cells and expansion of luminal cells expressing prostate-specific antigen and alpha-methylacyl-CoA racemase. Our results demonstrate that histological characterization of cancers does not necessarily correlate with the cellular origins of the disease.

531 citations


Journal ArticleDOI
TL;DR: A silicon microfluidic cell-capture technology that, when coupled to an automated imaging system, enables the detection and enumeration of prostate cancer cells fished out from the blood, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor–associated marker.
Abstract: Rarecirculatingtumorcells(CTCs)arepresentinthebloodofpatientswithmetastaticepithelialcancersbuthavebeen difficult to measure routinely. We report a quantitative automated imaging system for analysis of prostate CTCs, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor–associated marker. The specificity of PSA staining enabled optimization of criteria for baseline image intensity, morphometric measurements, and integration of multiple signals in a three-dimensional microfluidic device. In a pilot analysis, we detected CTCs in prostate cancer patients with localized disease, before surgical tumor removal in 8 of 19 (42%) patients (range, 38 to 222 CTCs per milliliter). For 6 of the 8 patients with preoperative CTCs, a precipitous postoperative decline (<24 hours) suggests a short half-life for CTCs in the blood circulation. Other patients had persistent CTCs for up to 3 months after prostate removal, suggesting early but transient disseminated tumor deposits. In patients with metastatic prostate cancer, CTCs were detected in 23 of 36 (64%) cases (range, 14 to 5000 CTCs per milliliter). In previously untreated patients followed longitudinally, the numbers of CTCs declined after the initiation of effective therapy. The prostate cancer– specific TMPRSS2-ERG fusion was detectable in RNA extracted from CTCs from 9 of 20 (45%) patients with metastatic disease, and dual staining of captured CTCs for PSA and the cell division marker Ki67 indicated a broad range for the proportion of proliferating cells among CTCs. This method for analysis of CTCs will facilitate the application of noninvasive tumor sampling to direct targeted therapies in advanced prostate cancer and warrants the initiation of longterm clinical studies to test the importance of CTCs in invasive localized disease.

531 citations


Journal ArticleDOI
TL;DR: The therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection is indicated and systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.

419 citations


Journal ArticleDOI
TL;DR: Geometrically enhanced differential immunocapture and an antibody for prostate-specific membrane antigen (PSMA) are used for high-efficiency and high-purity capture of prostate circulating tumor cells from peripheral whole blood samples of castrate-resistant prostate cancer patients.
Abstract: Geometrically enhanced differential immunocapture (GEDI) and an antibody for prostate-specific membrane antigen (PSMA) are used for high-efficiency and high-purity capture of prostate circulating tumor cells from peripheral whole blood samples of castrate-resistant prostate cancer patients.

380 citations


Journal ArticleDOI
TL;DR: It is suggested that ALDH-based viable cell sorting can be used to identify and characterize tumor-initiating and, more importantly perhaps, metastasis- initiating cells in human prostate cancer.
Abstract: Metastatic progression of advanced prostate cancer is a major clinical problem. Identifying the cell(s) of origin in prostate cancer and its distant metastases may permit the development of more effective treatment and preventive therapies. In this study, aldehyde dehydrogenase (ALDH) activity was used as a basis to isolate and compare subpopulations of primary human prostate cancer cells and cell lines. ALDH-high prostate cancer cells displayed strongly elevated clonogenicity and migratory behavior in vitro. More strikingly, ALDH-high cells readily formed distant metastases with strongly enhanced tumor progression at both orthotopic and metastatic sites in preclinical models. Several ALDH isoforms were expressed in human prostate cancer cells and clinical specimens of primary prostate tumors with matched bone metastases. Our findings suggest that ALDH-based viable cell sorting can be used to identify and characterize tumor-initiating and, more importantly perhaps, metastasis-initiating cells in human prostate cancer.

374 citations


Journal ArticleDOI
TL;DR: Multimodal magnetic resonance imaging is an effective technique to localize prostate cancer and is an accurate method to detect clinically significant prostate cancer in men with repeat negative biopsies and increased prostate specific antigen.

372 citations


Journal ArticleDOI
TL;DR: This study qualifies a specific anti-ERG antibody and demonstrates exquisite association between ERG gene rearrangement and truncated ERG protein product expression and suggests clinical utility in prostate needle biopsy evaluation.

348 citations


Journal ArticleDOI
TL;DR: Investigating the stem-cell-related function and clinical significance of the ALDH1A1 in human PCa found it to be a prostate CSC-related marker and measuring its expression might provide a potential approach to study tumorigenesis of PCa and predict outcome of the disease.

343 citations


Journal ArticleDOI
TL;DR: It is shown that in addition to blocking cell division, docetaxel impairs AR signaling, evidence that enables new insights into the therapeutic efficacy of microtubule-targeting drugs in prostate cancer.
Abstract: The therapeutic effects of taxanes in castration-resistant prostate cancers are linked to their effects on androgen signaling.

341 citations


Journal ArticleDOI
TL;DR: BRCA2 mutation carriers had an increased risk of prostate cancer and a higher histologic grade, and BRCA1 or BRCa2 mutations were associated with a more aggressive clinical course, which may have implications for tailoring clinical management of this subset of hereditary prostate cancer.
Abstract: Purpose: Increased prostate cancer risk has been reported for BRCA mutation carriers, but BRCA -associated clinicopathologic features have not been clearly defined. Experimental Design: We determined BRCA mutation prevalence in 832 Ashkenazi Jewish men diagnosed with localized prostate cancer between 1988 and 2007 and 454 Ashkenazi Jewish controls and compared clinical outcome measures among 26 BRCA mutation carriers and 806 noncarriers. Kruskal-Wallis tests were used to compare age of diagnosis and Gleason score, and logistic regression models were used to determine associations between carrier status, prostate cancer risk, and Gleason score. Hazard ratios (HR) for clinical end points were estimated using Cox proportional hazards models. Results: BRCA2 mutations were associated with a 3-fold risk of prostate cancer [odds ratio, 3.18; 95% confidence interval (95% CI), 1.52-6.66; P = 0.002] and presented with more poorly differentiated (Gleason score ≥7) tumors (85% versus 57%; P = 0.0002) compared with non–BRCA-associated prostate cancer. BRCA1 mutations conferred no increased risk. After 7,254 person-years of follow-up, and adjusting for clinical stage, prostate-specific antigen, Gleason score, and treatment, BRCA2 and BRCA1 mutation carriers had a higher risk of recurrence [HR (95% CI), 2.41 (1.23-4.75) and 4.32 (1.31-13.62), respectively] and prostate cancer–specific death [HR (95% CI), 5.48 (2.03-14.79) and 5.16 (1.09-24.53), respectively] than noncarriers. Conclusions: BRCA2 mutation carriers had an increased risk of prostate cancer and a higher histologic grade, and BRCA1 or BRCA2 mutations were associated with a more aggressive clinical course. These results may have implications for tailoring clinical management of this subset of hereditary prostate cancer. Clin Cancer Res; 16(7); 2115–21. ©2010 AACR.

Journal ArticleDOI
TL;DR: Results showed that age at prostate cancer initiation and clinical characteristics did not differ by race in the autopsy series, and the concept that prostate cancer grows more rapidly in black than in white men and/or earlier transformation from latent to aggressive prostate cancer occurs in black compared with white men is supported.

Journal ArticleDOI
TL;DR: It is concluded that Bmi-1 is a crucial regulator of self-renewal in adult prostate cells and plays important roles in prostate cancer initiation and progression.

Journal ArticleDOI
TL;DR: The purpose of this review is to examine the current status of prostate cancer biomarkers, with special emphasis on emerging markers, by evaluating their diagnostic and prognostic potentials.
Abstract: Prostate cancer is the most frequently diagnosed malignancy in American men, and a more aggressive form of the disease is particularly prevalent among African Americans. The therapeutic success rate for prostate cancer can be tremendously improved if the disease is diagnosed early. Thus, a successful therapy for this disease depends heavily on the clinical indicators (biomarkers) for early detection of the presence and progression of the disease, as well as the prediction after the clinical intervention. However, the current clinical biomarkers for prostate cancer are not ideal as there remains a lack of reliable biomarkers that can specifically distinguish between those patients who should be treated adequately to stop the aggressive form of the disease and those who should avoid overtreatment of the indolent form. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. A biomarker reveals further information to presently existing clinical and pathological analysis. It facilitates screening and detecting the cancer, monitoring the progression of the disease, and predicting the prognosis and survival after clinical intervention. A biomarker can also be used to evaluate the process of drug development, and, optimally, to improve the efficacy and safety of cancer treatment by enabling physicians to tailor treatment for individual patients. The form of the prostate cancer biomarkers can vary from metabolites and chemical products present in body fluid to genes and proteins in the prostate tissues. Current advances in molecular techniques have provided new tools facilitating the discovery of new biomarkers for prostate cancer. These emerging biomarkers will be beneficial and critical in developing new and clinically reliable indicators that will have a high specificity for the diagnosis and prognosis of prostate cancer. The purpose of this review is to examine the current status of prostate cancer biomarkers, with special emphasis on emerging markers, by evaluating their diagnostic and prognostic potentials. Both genes and proteins that reveal loss, mutation, or variation in expression between normal prostate and cancerous prostate tissues will be covered in this article. Along with the discovery of prostate cancer biomarkers, we will describe the criteria used when selecting potential biomarkers for further development towards clinical use. In addition, we will address how to appraise and validate candidate markers for prostate cancer and some relevant issues involved in these processes. We will also discuss the new concept of the biomarkers, existing challenges, and perspectives of biomarker development.

Journal ArticleDOI
TL;DR: The concept of targeting the lipogenic enzyme SCD1 as a new promising therapeutic approach to block oncogenesis and prostate cancer progression is supported for the first time.
Abstract: Increased de novo fatty acid (FA) synthesis is one hallmark of tumor cells, including prostate cancer. We present here our most recent results showing that lipid composition in human prostate cancer is characterized by an increased ratio of monounsaturated FA to saturated FA, compared with normal prostate, and evidence the overexpression of the lipogenic enzyme stearoyl-CoA desaturase 1 (SCD1) in human prostate cancer. As a new therapeutic strategy, we show that pharmacologic inhibition of SCD1 activity impairs lipid synthesis and results in decreased proliferation of both androgen-sensitive and androgen-resistant prostate cancer cells, abrogates the growth of prostate tumor xenografts in nude mice, and confers therapeutic benefit on animal survival. We show that these changes in lipid synthesis are translated into the inhibition of the AKT pathway and that the decrease in concentration of phosphatidylinositol-3,4,5-trisphosphate might at least partially mediate this effect. Inhibition of SCD1 also promotes the activation of AMP-activated kinase and glycogen synthase kinase 3alpha/beta, the latter on being consistent with a decrease in beta-catenin activity and mRNA levels of various beta-catenin growth-promoting transcriptional targets. Furthermore, we show that SCD1 activity is required for cell transformation by Ras oncogene. Together, our data support for the first time the concept of targeting the lipogenic enzyme SCD1 as a new promising therapeutic approach to block oncogenesis and prostate cancer progression.

Journal ArticleDOI
TL;DR: It is shown that the loss of DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and prostate carcinoma cells as well as in clinical prostate-cancer specimens.
Abstract: A single nucleotide polymorphism in the DAB2IP gene is associated with risk of aggressive prostate cancer (PCa), and loss of DAB2IP expression is frequently detected in metastatic PCa. However, the functional role of DAB2IP in PCa remains unknown. Here, we show that the loss of DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and prostate carcinoma cells as well as in clinical prostate-cancer specimens. Conversely, restoring DAB2IP in metastatic PCa cells reversed EMT. In DAB2IP knockout mice, prostate epithelial cells exhibited elevated mesenchymal markers, which is characteristic of EMT. Using a human prostate xenograft-mouse model, we observed that knocking down endogenous DAB2IP in human carcinoma cells led to the development of multiple lymph node and distant organ metastases. Moreover, we showed that DAB2IP functions as a scaffold protein in regulating EMT by modulating nuclear β-catenin/T-cell factor activity. These results show the mechanism of DAB2IP in EMT and suggest that assessment of DAB2IP may provide a prognostic biomarker and potential therapeutic target for PCa metastasis.

Journal ArticleDOI
TL;DR: A molecular panel for prostate cancer progression was developed by reasoning that molecular profiles might further improve current clinical models, but none of the predictive models using molecular profiles significantly improved over models using clinical variables only.
Abstract: Background: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. Conclusions: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.

Journal ArticleDOI
TL;DR: In the appropriate clinical setting, the addition of IHC staining for NKX3.1, along with other prostate-restricted markers, may prove to be a valuable adjunct to definitively determine prostatic origin in poorly differentiated metastatic carcinomas.
Abstract: NKX3.1 is a prostatic tumor suppressor gene located on chromosome 8p. Although most studies have shown that staining for NKX3.1 protein is positive in the majority of primary prostatic adenocarcinomas, it has been shown to be downregulated in many high-grade prostate cancers, and completely lost in the majority of metastatic prostate cancers (eg, in 65% to 78% of lesions). A recent study showed that NKX3.1 staining with a novel antibody was highly sensitive and specific for high-grade prostatic adenocarcinoma when compared with high-grade urothelial carcinoma. This raised the question that this antibody may perform better than earlier used antibodies in metastatic prostate tumors. However, the sensitivity and specificity for prostate carcinomas for this antibody in metastatic lesions was not determined. Although prostate-specific antigen (PSA) and prostatic-specific acid phosphatase (PSAP) are excellent tissue markers of prostate cancer, at times they may be expressed at low levels, focally, or not at all in poorly differentiated primary and metastatic prostatic adenocarcinomas. The purpose of this study was to determine the performance of NKX3.1 as a marker of metastatic adenocarcinoma of prostatic origin. Immunohistochemical staining against NKX3.1, PSA, and PSAP was carried out on a tissue microarray (TMA) (0.6-mm tissue cores) of hormone naive metastatic prostate adenocarcinoma specimens from lymph nodes, bone, and soft tissue. To determine the specificity of NKX3.1 for prostatic adenocarcinoma, we used TMAs that contained cancers from various sites including the urinary bladder, breast, colon, salivary gland, stomach, pancreas, thyroid, and central nervous system, and standard paraffin sections of cancers from other sites including the adrenal cortex, kidney, liver, lung, and testis. Overall 349 nonprostatic tumors were evaluated. Any nuclear staining for NKX3.1 was considered positive and the percentage of cells with nuclear staining and their mean intensity level were assessed visually. Sensitivity was calculated by considering a case positive if any TMA core was positive. The sensitivity for identifying metastatic prostatic adenocarcinomas overall was 98.6% (68/69 cases positive) for NKX3.1, 94.2% (65/69 cores positive) for PSA, and 98.6% (68/69 cores positive) for PSAP. The specificity of NKX3.1 was 99.7% (1/349 nonprostatic tumors positive). The sole positive nonprostatic cancer case was an invasive lobular carcinoma of the breast. NKX3.1 seems to be a highly sensitive and specific tissue marker of metastatic prostatic adenocarcinoma. In the appropriate clinical setting, the addition of IHC staining for NKX3.1, along with other prostate-restricted markers, may prove to be a valuable adjunct to definitively determine prostatic origin in poorly differentiated metastatic carcinomas.

Journal ArticleDOI
TL;DR: Sarcosine in urine after rectal digital examination cannot be considered as a suitable marker to differentiate between patients with and without PCa, and nonparametric statistical tests and receiver operating characteristics analyses proved that the discrimination between PCa and NEM patients was not improved by sarcosine, but it was significantly worse than the percent free PSA.

Journal ArticleDOI
TL;DR: Application of a panel of four kallikrein forms to 1,000 men with elevated PSA would reduce the number of biopsies by 513 and miss 54 of 177 low-grade cancers and 12 of 100 high- grade cancers.
Abstract: Purpose We previously reported that a panel of four kallikrein forms in blood—total, free, and intact prostate-specific antigen (PSA) and kallikrein-related peptidase 2 (hK2)—can reduce unnecessary biopsy in previously unscreened men with elevated total PSA. We aimed to replicate our findings in a large, independent, representative, population-based cohort. Patients and Methods The study cohort included 2,914 previously unscreened men undergoing biopsy as a result of elevated PSA (≥ 3 ng/mL) in the European Randomized Study of Screening for Prostate Cancer, Rotterdam, with 807 prostate cancers (28%) detected. The cohort was randomly divided 1:3 into a training and validation set. Levels of kallikrein markers were compared with biopsy outcome. Results Addition of free PSA, intact PSA, and hK2 to a model containing total PSA and age improved the area under the curve from 0.64 to 0.76 and 0.70 to 0.78 for models without and with digital rectal examination results, respectively (P < .001 for both). Applicatio...

Journal ArticleDOI
TL;DR: Comparing the microRNA profile of primary prostate cancers and noncancer prostate tissues using deep sequencing indicates that miR-143 and mi-145 are involved in the regulation of MYO6 expression and possibly in the development of prostate cancer.
Abstract: Prostate cancer is a leading cause of tumor mortality. To characterize the underlying molecular mechanisms, we have compared the microRNA (miRNA) profile of primary prostate cancers and noncancer prostate tissues using deep sequencing. MiRNAs are small noncoding RNAs of 21 to 25 nucleotides that regulate gene expression through the inhibition of protein synthesis. We find that 33 miRNAs were upregulated or downregulated >1.5-fold. The deregulation of selected miRNAs was confirmed by both Northern blotting and quantitative reverse transcription-PCR in established prostate cancer cell lines and clinical tissue samples. A computational search indicated the 3'-untranslated region (UTR) of the mRNA for myosin VI (MYO6) as a potential target for both miR-143 and miR-145, the expression of which was reduced in the tumor tissues. Upregulation of myosin VI in prostate cancer was previously shown by immunohistochemistry. The level of MYO6 mRNA was significantly induced in all primary tumor tissues compared with the nontumor tissue from the same patient. This finding was matched to the upregulation of myosin VI in established prostate cancer cell lines. In luciferase reporter analysis, we find a significant negative regulatory effect on the MYO6 3'UTR by both miR-143 and miR-145. Mutation of the potential binding sites for miR-143 and miR-145 in the MYO6 3'UTR resulted in a loss of responsiveness to the corresponding miRNA. Our data indicate that miR-143 and miR-145 are involved in the regulation of MYO6 expression and possibly in the development of prostate cancer.


Journal ArticleDOI
TL;DR: The ability of androgens to induce EMT by potentially bypassing the functional involvement of TGF‐ß, thus contributing to metastatic behavior of prostate cancer cells is indicated.
Abstract: Androgens are functionally required for the normal growth of the prostate gland and in prostate tumor development and progression. Epithelial-mesenchymal-transition (EMT) is an important process during normal development and in cancer cell metastasis induced by factors within the microenvironment, such as transforming growth factor-beta (TGF-beta). This study examined the ability of androgens to influence EMT of prostate cancer epithelial cells. The EMT pattern was evaluated on the basis of expression of the epithelial markers E-cadherin/beta-catenin, and the mesenchymal markers N-cadherin, as well as cytoskeleton reorganization in response to 5alpha-dihydrotestosterone (DHT; 1 nM) and/or TGF-beta (5 ng/ml). Overexpressing and silencing approaches to regulate androgen receptor (AR) expression were conducted to determine the involvement of AR in EMT in the presence or absence of an AR antagonist. Our results demonstrate that androgens induce the EMT pattern in prostate tumor epithelial cell with Snail activation and lead to significant changes in prostate cancer cell migration and invasion potential. Expression levels of AR inversely correlated with androgen-mediated EMT in prostate tumor epithelial cells, pointing to a low AR content required for the EMT phenotype. These findings indicate the ability of androgens to induce EMT by potentially bypassing the functional involvement of TGF-beta, thus contributing to metastatic behavior of prostate cancer cells.-Zhum, M.-L., Kyprianou, N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells.

Journal ArticleDOI
TL;DR: This study uses an in vivo bacterial artificial chromosome (BAC) enhancer-trapping strategy in mice to scan a half-megabase of the 8q24 gene desert encompassing the prostate cancer-associated regions for long-range cis-regulatory elements.
Abstract: Genome-wide association studies (GWAS) routinely identify risk variants in noncoding DNA, as exemplified by reports of multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer in five independent regions in a gene desert on 8q24. Two of these regions also have been associated with breast and colorectal cancer. These findings implicate functional variation within long-range cis-regulatory elements in disease etiology. We used an in vivo bacterial artificial chromosome (BAC) enhancer-trapping strategy in mice to scan a half-megabase of the 8q24 gene desert encompassing the prostate cancer-associated regions for long-range cis-regulatory elements. These BAC assays identified both prostate and mammary gland enhancer activities within the region. We demonstrate that the 8q24 cancer-associated variant rs6983267 lies within an in vivo prostate enhancer whose expression mimics that of the nearby MYC proto-oncogene. Additionally, we show that the cancer risk allele increases prostate enhancer activity in vivo relative to the non-risk allele. This allele-specific enhancer activity is detectable during early prostate development and throughout prostate maturation, raising the possibility that this SNP could assert its influence on prostate cancer risk before tumorigenesis occurs. Our study represents an efficient strategy to build experimentally on GWAS findings with an in vivo method for rapidly scanning large regions of noncoding DNA for functional cis-regulatory sequences harboring variation implicated in complex diseases.

Journal ArticleDOI
TL;DR: It is found thatmiR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers, indicating an important role in apoptosis resistance in advanced prostate cancer.
Abstract: Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.

Journal ArticleDOI
TL;DR: Early results for two patients with acute urinary retention due to BPH, successfully treated by prostate artery embolization (PAE), show a promising potential alternative for treatment with PAE.
Abstract: Symptomatic benign prostatic hyperplasia (BPH) typically occurs in the sixth and seventh decades, and the most frequent obstructive urinary symptoms are hesitancy, decreased urinary stream, sensation of incomplete emptying, nocturia, frequency, and urgency. Various medications, specifically 5-α-reductase inhibitors and selective α-blockers, can decrease the severity of the symptoms secondary to BPH, but prostatectomy is still considered to be the traditional method of management. We report the preliminary results for two patients with acute urinary retention due to BPH, successfully treated by prostate artery embolization (PAE). The patients were investigated using the International Prostate Symptom Score, by digital rectal examination, urodynamic testing, prostate biopsy, transrectal ultrasound (US), and magnetic resonance imaging (MRI). Uroflowmetry and postvoid residual urine volume complemented the investigation at 30, 90, and 180 days after PAE. The procedure was performed under local anesthesia; embolization of the prostate arteries was performed with a microcatheter and 300- to 500-μm microspheres using complete stasis as the end point. One patient was subjected to bilateral PAE and the other to unilateral PAE; they urinated spontaneously after removal of the urethral catheter, 15 and 10 days after the procedure, respectively. At 6-month follow-up, US and MRI revealed a prostate reduction of 39.7% and 47.8%, respectively, for the bilateral PAE and 25.5 and 27.8%, respectively, for the patient submitted to unilateral PAE. The early results, at 6-month follow-up, for the two patients with BPH show a promising potential alternative for treatment with PAE.

Journal ArticleDOI
TL;DR: This study was performed to evaluate histone lysine and histone acetyl modifications in prostate tissue to evaluate their predictors of cancer recurrence in various tumor entities.
Abstract: PURPOSE Epigenetic alterations such as DNA methylation and histone modifications play important roles in carcinogenesis. It was reported that global histone modification patterns are predictors of cancer recurrence in various tumor entities. Our study was performed to evaluate histone lysine (HxKy) and histone acetyl (HxAc) modifications in prostate tissue. MATERIALS AND METHODS A tissue microarray with 113 prostate cancer (PCA), 23 non-malignant prostate tissues was stained with antibodies against H3K4 mono-(H3K4me1), di-(H3K4me2), tri-(H3K4me3) methylation, H3K9me1, H3K9me2, H3K9me3, H3 and H4 pan-acetylation (H3Ac, H4Ac). We also analyzed H3K4 methylation in patients with advanced PCA (hormone-refractory PCA—HRPC, n = 34; hormone-dependent PCA, n = 30). Sections were scored according the staining intensity and the proportion of epithelial cells showing nuclear staining. RESULTS H3K4me1, H3K9me2, H3K9me3, H3Ac, and H4Ac were significantly reduced in PCA compared to non-malignant prostate tissue. H3Ac and H3K9me2 levels allowed discrimination of PCA and non-malignant prostate tissue highly specifically (>91%) and sensitively (>78%) as determined via ROC analyses (AUC >0.91). Histone lysine methylation and histone acetylation marks were correlated with clinical–pathological parameters (i.e., digital rectal examination, preoperative PSA, pT-stage, lymph node metastasis, Gleason score). In addition, H3K4me1 was a significant predictor of PSA recurrence following radical prostatectomy. H3K4me1, H3K4me2, and H3K4me3 levels were significantly increased in HRPC. CONCLUSIONS Global histone modification levels may help to identify patients with adverse prognosis, and represent a target for the future therapy of PCA. Prostate 70: 61–69, 2010. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: At radical prostatectomy men in whom prior biopsies showed only intraductal carcinoma of the prostate typically have high grade (Gleason score 7 or greater) invasive adenocarcinoma and most have advanced stage disease (pT3).

Journal ArticleDOI
TL;DR: A therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and a potential value for talin 1 as a marker of tumor progression to metastasis are suggested.
Abstract: Talin1 is a focal adhesion complex protein that regulates integrin interactions with ECM. This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration, and invasion by activating survival signals and conferring resistance to anoikis. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1-regulated cell survival signals via phosphorylation of focal adhesion complex proteins, such as focal adhesion kinase and Src, and downstream activation of AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 immunoreactivity directly correlated with prostate tumor progression to metastasis in the transgenic adenocarcinoma mouse prostate mouse model. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared with primary prostate tumors (P < 0.0001). These findings suggest (a) a therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and (b) a potential value for talin1 as a marker of tumor progression to metastasis.

Journal ArticleDOI
TL;DR: The complication rate is low, incontinence and the need for ancillary procedures are rare, and holmium laser prostate enucleation is safe and effective for benign prostatic hyperplasia with durable long-term results.