scispace - formally typeset
Search or ask a question

Showing papers on "Quantum computer published in 2018"


Journal ArticleDOI
TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future as mentioned in this paper, which will be useful tools for exploring many-body quantum physics, and may have other useful applications.
Abstract: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

3,898 citations


Journal ArticleDOI
06 Aug 2018
TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future, and the 100-qubit quantum computer will not change the world right away - but it should be regarded as a significant step toward the more powerful quantum technologies of the future.
Abstract: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

2,598 citations


Journal ArticleDOI
TL;DR: In this paper, the equivalence of the adiabatic and circuit models of quantum computation has been proved, and the placement of quantum computations in the more general classification of computational complexity theory is discussed.
Abstract: The simple act of slowly varying the parameters of a quantum system so that it remains always in its ground state is extremely rich from an information processing point of view. For an ideal, closed system, this adiabatic evolution is equivalent to full quantum computation, and it is convenient for establishing quantum algorithms for optimization. This review presents adiabatic quantum algorithms, proves the closed-system equivalence of the adiabatic and circuit models of quantum computation, reviews the placement of adiabatic quantum computation in the more general classification of computational complexity theory, and discusses the case of ``stoquastic'' quantum evolutions.

800 citations


Journal ArticleDOI
29 Mar 2018-Nature
TL;DR: A two-qubit quantum processor in a silicon device is demonstrated in this paper, which can perform the Deutsch-Josza algorithm and the Grover search algorithm on demand.
Abstract: A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm. The development of platforms for spin-based quantum computing continues apace. The individual components of such a system have been the subject of much investigation, and they have been assembled to implement specific quantum-computational algorithms. Thomas Watson and colleagues have now taken such component integration and control to the next level. Using two single-electron-spin qubits in a silicon-based double quantum dot, they realize a system that can be simply programmed to perform different quantum algorithms on demand. Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing1,2. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform3,4,5. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations6,7,8,9. However, as seen with small-scale demonstrations of quantum computers using other types of qubit10,11,12,13, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

703 citations


Journal ArticleDOI
TL;DR: It is revealed that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Abstract: The isolation of qubits from noise sources, such as surrounding nuclear spins and spin–electric susceptibility 1–4 , has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations 5–7 . Still, a sizeable spin–electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin–spin manipulations 8–10 . Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs) 11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin–electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

700 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain, and discuss the fundamental issue of quantum generalizations of learning and AI concepts.
Abstract: Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research-quantum information versus machine learning (ML) and artificial intelligence (AI)-have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our 'big data' world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement-exploring what ML/AI can do for quantum physics and vice versa-researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.

684 citations


Journal ArticleDOI
TL;DR: It is demonstrated that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements, and can benefit existing and future generations of devices.
Abstract: The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1–3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6–8.

656 citations


Journal ArticleDOI
26 Jan 2018-Science
TL;DR: An efficient resonantly driven CNOT gate for electron spins in silicon is demonstrated and used to create an entangled quantum state called the Bell state with 78% fidelity, which enables multi-qubit algorithms in silicon.
Abstract: Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.

569 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy and showed that this sampling task must take exponential time in a classical computer.
Abstract: A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer. As a benchmark for the development of a future quantum computer, sampling from random quantum circuits is suggested as a task that will lead to quantum supremacy—a calculation that cannot be carried out classically.

567 citations


Journal ArticleDOI
19 Jun 2018
TL;DR: In this article, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained, and simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies.
Abstract: Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term quantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.

554 citations


Posted Content
TL;DR: A quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning, is introduced and it is shown through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets.
Abstract: We introduce a quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning. The quantum circuit consists of a sequence of parameter dependent unitary transformations which acts on an input quantum state. For binary classification a single Pauli operator is measured on a designated readout qubit. The measured output is the quantum neural network's predictor of the binary label of the input state. First we look at classifying classical data sets which consist of n-bit strings with binary labels. The input quantum state is an n-bit computational basis state corresponding to a sample string. We show how to design a circuit made from two qubit unitaries that can correctly represent the label of any Boolean function of n bits. For certain label functions the circuit is exponentially long. We introduce parameter dependent unitaries that can be adapted by supervised learning of labeled data. We study an example of real world data consisting of downsampled images of handwritten digits each of which has been labeled as one of two distinct digits. We show through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets. We then discuss presenting the data as quantum superpositions of computational basis states corresponding to different label values. Here we show through simulation that learning is possible. We consider using our QNN to learn the label of a general quantum state. By example we show that this can be done. Our work is exploratory and relies on the classical simulation of small quantum systems. The QNN proposed here was designed with near-term quantum processors in mind. Therefore it will be possible to run this QNN on a near term gate model quantum computer where its power can be explored beyond what can be explored with simulation.

Journal ArticleDOI
TL;DR: Two classification algorithms that use the quantum state space to produce feature maps are demonstrated on a superconducting processor, enabling the solution of problems when the feature space is large and the kernel functions are computationally expensive to estimate.
Abstract: Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.

Journal ArticleDOI
26 Apr 2018-Nature
TL;DR: In this paper, the existence of entanglement in the steady state of two massive micromechanical oscillators coupled to a microwave-frequency electromagnetic cavity was shown to be established by combining measurements of correlated mechanical fluctuations with analysis of the microwaves emitted from the cavity.
Abstract: Quantum entanglement is a phenomenon whereby systems cannot be described independently of each other, even though they may be separated by an arbitrarily large distance 1 . Entanglement has a solid theoretical and experimental foundation and is the key resource behind many emerging quantum technologies, including quantum computation, cryptography and metrology. Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons2–5, ions 6 and electron spins 7 , and more recently in microwave and electromechanical devices8–10. For macroscopic-scale objects8–14, however, it is very vulnerable to environmental disturbances, and the creation and verification of entanglement of the centre-of-mass motion of macroscopic-scale objects remains an outstanding goal. Here we report such an experimental demonstration, with the moving bodies being two massive micromechanical oscillators, each composed of about 10 12 atoms, coupled to a microwave-frequency electromagnetic cavity that is used to create and stabilize the entanglement of their centre-of-mass motion15–17. We infer the existence of entanglement in the steady state by combining measurements of correlated mechanical fluctuations with an analysis of the microwaves emitted from the cavity. Our work qualitatively extends the range of entangled physical systems and has implications for quantum information processing, precision measurements and tests of the limits of quantum mechanics.

Journal ArticleDOI
TL;DR: In this article, a trapped-ion implementation of one such hybrid algorithm is used to solve a quantum chemistry problem, which is a promising approach for near-term practical applications of quantum computers.
Abstract: Quantum-classical hybrid algorithms are a promising approach for near-term practical applications of quantum computers. A new experiment demonstrates how a trapped-ion implementation of one such algorithm solves a quantum chemistry problem.

Journal ArticleDOI
TL;DR: In this article, the authors present an updated summary of the roadmap of quantum technologies (QT) and present an overview of the current state-of-the-art quantum technologies.
Abstract: Within the last two decades, quantum technologies (QT) have made tremendous progress, moving from Nobel Prize award-winning experiments on quantum physics (1997: Chu, Cohen-Tanoudji, Phillips; 2001: Cornell, Ketterle, Wieman; 2005: Hall, Hansch-, Glauber; 2012: Haroche, Wineland) into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: quantum communication, where individual or entangled photons are used to transmit data in a provably secure way; quantum simulation, where well-controlled quantum systems are used to reproduce the behaviour of other, less accessible quantum systems; quantum computation, which employs quantum effects to dramatically speed up certain calculations, such as number factoring; and quantum sensing and metrology, where the high sensitivity of coherent quantum systems to external perturbations is exploited to enhance the performance of measurements of physical quantities. In Europe, the QT community has profited from several EC funded coordination projects, which, among other things, have coordinated the creation of a 150-page QT Roadmap (http://qurope.eu/h2020/qtflagship/roadmap2016). This article presents an updated summary of this roadmap.

Journal ArticleDOI
19 Oct 2018
TL;DR: The application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz is studied and an analytical method to compute the energy gradient is proposed that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients.
Abstract: The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectation values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this paper, we study the application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We introduce new strategies to reduce the circuit depth for the implementation of UCC and improve the optimization of the wavefunction based on efficient classical approximations of the cluster amplitudes. Additionally, we propose an analytical method to compute the energy gradient that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients. We illustrate our methodology with numerical simulations for a system of four hydrogen atoms that exhibit strong correlation and show that the circuit depth of VQE using a UCC ansatz can be reduced without introducing significant loss of accuracy in the final wavefunctions and energies.

Posted Content
TL;DR: PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation, and it extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations.
Abstract: PennyLane is a Python 3 software framework for optimization and machine learning of quantum and hybrid quantum-classical computations. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware. We provide plugins for Strawberry Fields, Rigetti Forest, Qiskit, Cirq, and ProjectQ, allowing PennyLane optimizations to be run on publicly accessible quantum devices provided by Rigetti and IBM Q. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, and autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.

Journal ArticleDOI
14 Jun 2018-Nature
TL;DR: In this article, a single-photon entanglement protocol was proposed to achieve entangling fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection.
Abstract: Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes1–7. Moving beyond current two-node networks8–13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform14. At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

Journal ArticleDOI
TL;DR: It is argued that simulating the time evolution of spin systems is a classically hard problem of practical interest that is among the easiest to address with early quantum devices, and develops optimized implementations and performs detailed resource analyses for several leading quantum algorithms for this problem.
Abstract: With quantum computers of significant size now on the horizon, we should understand how to best exploit their initially limited abilities. To this end, we aim to identify a practical problem that is beyond the reach of current classical computers, but that requires the fewest resources for a quantum computer. We consider quantum simulation of spin systems, which could be applied to understand condensed matter phenomena. We synthesize explicit circuits for three leading quantum simulation algorithms, using diverse techniques to tighten error bounds and optimize circuit implementations. Quantum signal processing appears to be preferred among algorithms with rigorous performance guarantees, whereas higher-order product formulas prevail if empirical error estimates suffice. Our circuits are orders of magnitude smaller than those for the simplest classically infeasible instances of factoring and quantum chemistry, bringing practical quantum computation closer to reality.

Journal ArticleDOI
TL;DR: In this paper, a review of the theoretical differences between qubits and higher dimensional systems, qudits, in different quantum information scenarios is given. And the authors consider the advantages of such higher-dimensional systems, which include higher information capacity and greater protection from eavesdropping.
Abstract: Twisted photons can be used as alphabets to encode information beyond one bit per single photon. This ability offers great potential for quantum information tasks, as well as for the investigation of fundamental questions. In this review article, we give a brief overview of the theoretical differences between qubits and higher dimensional systems, qudits, in different quantum information scenarios. We then describe recent experimental developments in this field over the past three years. Finally, we summarize some important experimental and theoretical questions that might be beneficial to understand better in the near future. Photons possessing orbital angular momentum are promising for systems for realizing new quantum information applications. Quantum computing and communications are set to revolutionize information technology, but most systems studied to date are based on qubits —quantum analogs of classical bits that can take one of only two states. Manuel Erhard at the University of Vienna, Austria, and co-workers review progress in higher dimensional systems that use photons with orbital angular momentum, or twisted photons, as ‘qudits’, which can have any number of levels. They look at the advantages of such higher-dimensional systems, which include higher information capacity and greater protection from eavesdropping. The researchers then examine exciting developments in the field in the past two to three years, such as the creation of high-dimensional entanglement and optimal quantum cloning. Finally, they consider future challenges.

Journal ArticleDOI
14 Feb 2018-Nature
TL;DR: Strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz is demonstrated, which opens up a direct path to entangling single spins using microwave- frequencies.
Abstract: Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin–spin coupling and connections between arbitrary pairs of qubits (‘all-to-all’ connectivity) in a spin-based quantum processor. Realizing coherent spin–photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin–photon interactions is based on spin–charge hybridization in the presence of a magnetic-field gradient. In addition to spin–photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons. A single spin in silicon is strongly coupled to a microwave-frequency photon and coherent single-spin dynamics are observed using circuit quantum electrodynamics. Solid-state spins are promising qubits for quantum information processing thanks to their long coherence times, but harnessing spin–spin interactions is still a challenge. Spin–spin coupling is currently based on the exchange interaction and the weaker dipole–dipole interaction. Strong spin–photon coupling, achieved through coherent spin–photon interactions, could enable long-distance spin entanglement mediated by microwave photons. Here, Jason Petta and colleagues demonstrate a spin–photon interface where a single electron spin in a silicon double quantum dot is strongly coupled to a photon trapped in a microwave cavity. The technique, which relies on spin–charge hybridization in the presence of an inhomogeneous magnetic field, generates spin–photon coupling rates that ensure the coherence of the interface. The authors demonstrate all-electric control of the spin–photon coupling, as well as coherent manipulation of the spin state and dispersive readout of the single electron spin. These results suggest that a spin-based quantum processor might be one step closer.

Journal ArticleDOI
TL;DR: An extended protocol based on a quantum subspace expansion (QSE) is used to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization and can mitigate the effects of incoherent errors.
Abstract: © 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.

Journal ArticleDOI
TL;DR: In this article, a fully programmable two-qubit quantum processor is presented, which enables universal quantum information processing in optics, using large-scale silicon photonic circuits to implement an extension of the linear combination of quantum operators scheme.
Abstract: Photonics is a promising platform for implementing universal quantum information processing. Its main challenges include precise control of massive circuits of linear optical components and effective implementation of entangling operations on photons. By using large-scale silicon photonic circuits to implement an extension of the linear combination of quantum operators scheme, we realize a fully programmable two-qubit quantum processor, enabling universal two-qubit quantum information processing in optics. The quantum processor is fabricated with mature CMOS-compatible processing and comprises more than 200 photonic components. We programmed the device to implement 98 different two-qubit unitary operations (with an average quantum process fidelity of 93.2 ± 4.5%), a two-qubit quantum approximate optimization algorithm, and efficient simulation of Szegedy directed quantum walks. This fosters further use of the linear-combination architecture with silicon photonics for future photonic quantum processors.

Journal ArticleDOI
TL;DR: A new analysis of quantum error mitigation, which attempts to limit the effects of errors in near-term quantum computers, shows that two proposed techniques can work in small systems without the need for extra qubits or peripheral devices.
Abstract: A new analysis of quantum error mitigation, which attempts to limit the effects of errors in near-term quantum computers, shows that two proposed techniques can work in small systems without the need for extra qubits or peripheral devices.

Journal ArticleDOI
TL;DR: This work designs a low-depth version of the unitary coupled-cluster ansatz, uses the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent of the deuteron binding energy.
Abstract: We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

Journal ArticleDOI
TL;DR: In this paper, a quantum-classical algorithm was proposed to study the dynamics of the two-spatial-site Schwinger model on IBM's quantum computers using rotational symmetries, total charge, and parity.
Abstract: We present a quantum-classical algorithm to study the dynamics of the two-spatial-site Schwinger model on IBM's quantum computers. Using rotational symmetries, total charge, and parity, the number of qubits needed to perform computation is reduced by a factor of $\ensuremath{\sim}5$, removing exponentially large unphysical sectors from the Hilbert space. Our work opens an avenue for exploration of other lattice quantum field theories, such as quantum chromodynamics, where classical computation is used to find symmetry sectors in which the quantum computer evaluates the dynamics of quantum fluctuations.

Journal ArticleDOI
09 Mar 2018-Science
TL;DR: This work demonstrates the strong coupling of a single electron spin and a single microwave photon, and provides a route to realizing large networks of quantum dot–based spin qubit registers.
Abstract: Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

Journal ArticleDOI
TL;DR: In this article, the authors report progress towards high-fidelity quantum control of Rydberg-atom qubits by reducing laser phase noise, which yields a significant improvement in coherence properties of individual qubits.
Abstract: Individual neutral atoms excited to Rydberg states are a promising platform for quantum simulation and quantum information processing. However, experimental progress to date has been limited by short coherence times and relatively low gate fidelities associated with such Rydberg excitations. We report progress towards high-fidelity quantum control of Rydberg-atom qubits. Enabled by a reduction in laser phase noise, our approach yields a significant improvement in coherence properties of individual qubits. We further show that this high-fidelity control extends to the multi-particle case by preparing a two-atom entangled state with a fidelity exceeding 0.97(3), and extending its lifetime with a two-atom dynamical decoupling protocol. These advances open up new prospects for scalable quantum simulation and quantum computation with neutral atoms.

Journal ArticleDOI
TL;DR: A review of the literature in quantum machine learning can be found in this article, where the authors discuss perspectives for a mixed readership of classical ML and quantum computation experts and highlight the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems.
Abstract: Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

Journal ArticleDOI
TL;DR: This aim is to provide a full review about the resource theory of quantum coherence, including its application in many-body systems, and the discordlike quantum correlations which were defined based on the various distance measures of states.