scispace - formally typeset
Search or ask a question

Showing papers by "Carlos Cordon-Cardo published in 2021"


Journal ArticleDOI
TL;DR: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020 to describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios with mortality.
Abstract: Background Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. Methods This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. Results Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. Conclusions AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.

361 citations



Journal ArticleDOI
TL;DR: The first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City revealed large pulmonary emboli in six cases and diffuse alveolar damage was present in over 90% of cases as mentioned in this paper.

144 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance, and found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses.

91 citations


Journal ArticleDOI
TL;DR: Sera with high SARS-CoV-2 antibody levels showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency, underscore the value of serum characterization for neutralization activity.
Abstract: Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.

64 citations



Journal ArticleDOI
TL;DR: In this article, a positive control cell line (Vero E6) was developed to validate SARS-CoV-2 detection assays, and the authors evaluated multiple organs (lungs, kidneys, heart, liver, brain, intestines, lymph nodes, and spleen) from fourteen COVID-19 autopsy cases using immunohistochemistry (IHC) and RNA in situ hybridization (RNA ISH) for the spike protein mRNA.

27 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases.
Abstract: Background Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. Methods We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. Results Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. Conclusions In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.

26 citations


Journal ArticleDOI
30 Jun 2021
TL;DR: It is shown that male sex was independently associated with in-hospital mortality, intubation, and ICU care after adjusting for demographics and comorbidities and sex-stratified models found that hypoxia interacted with sex to preferentially increase women’s mortality risk while obesity interacted withsex to preferentialially increase girls’ risk of intubations and intensive care in the primary cohort.
Abstract: Sex has consistently been shown to affect COVID-19 mortality, but it remains unclear how each sex’s clinical outcome may be distinctively shaped by risk factors. We studied a primary cohort of 4930 patients hospitalized with COVID-19 in a single healthcare system in New York City from the start of the pandemic till August 5, 2020, and a validation cohort of 1645 patients hospitalized with COVID-19 in the same healthcare system from August 5, 2020, to January 13, 2021. Here we show that male sex was independently associated with in-hospital mortality, intubation, and ICU care after adjusting for demographics and comorbidities. Using interaction analysis and sex-stratified models, we found that hypoxia interacted with sex to preferentially increase women’s mortality risk while obesity interacted with sex to preferentially increase women’s risk of intubation and intensive care in our primary cohort. In the validation cohort, we observed that male sex remained an independent risk factor for mortality, but sex-specific interactions were not replicated. We conducted a comprehensive sex-stratified analysis of a large cohort of hospitalized COVID-19 patients, highlighting clinical factors that may contribute to sex differences in the outcome of COVID-19. Men are at higher risk of death from COVID-19 than women, but the underlying reasons are not fully understood. We examined the medical data of men and women hospitalized with COVID-19 in New York City to determine whether there were factors which raised the risk of death or requiring intensive care more for one sex rather than the other. We observed that men hospitalized with COVID-19 had a higher risk of death than women when other factors taken into account. Some conditions, like low oxygen levels and obesity, appeared to be associated with worse outcomes in women compared to men early in the pandemic but further studies will be necessary for confirmation. These findings highlight groups of men and women who may be at increased risk of severe COVID-19. Jun et al. evaluate sex-stratified clinical outcomes in two cohorts of patients hospitalized with COVID-19 in New York. While male sex risk is a risk factor for poor outcome in both cohorts – one from earlier and one from later on in the pandemic – some of the sex-specific risk factors observed initially are not observed later on.

21 citations


Journal ArticleDOI
28 Jul 2021-Gut
TL;DR: In this article, the authors identify and quantitatively quantify small RNA clusters (smRCs) for hepatocellular carcinoma (HCC) detection, and demonstrate the potential of unannotated smRCs for biomarker research.
Abstract: Objective Surveillance tools for early cancer detection are suboptimal, including hepatocellular carcinoma (HCC), and biomarkers are urgently needed. Extracellular vesicles (EVs) have gained increasing scientific interest due to their involvement in tumour initiation and metastasis; however, most extracellular RNA (exRNA) blood-based biomarker studies are limited to annotated genomic regions. Design EVs were isolated with differential ultracentrifugation and integrated nanoscale deterministic lateral displacement arrays (nanoDLD) and quality assessed by electron microscopy, immunoblotting, nanoparticle tracking and deconvolution analysis. Genome-wide sequencing of the largely unexplored small exRNA landscape, including unannotated transcripts, identified and reproducibly quantified small RNA clusters (smRCs). Their key genomic features were delineated across biospecimens and EV isolation techniques in prostate cancer and HCC. Three independent exRNA cancer datasets with a total of 479 samples from 375 patients, including longitudinal samples, were used for this study. Results ExRNA smRCs were dominated by uncharacterised, unannotated small RNA with a consensus sequence of 20 nt. An unannotated 3-smRC signature was significantly overexpressed in plasma exRNA of patients with HCC (p Conclusion These findings directly lead to the prospect of a minimally invasive, blood-only, operator-independent clinical tool for HCC surveillance, thus highlighting the potential of unannotated smRCs for biomarker research in cancer.

19 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens.
Abstract: As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.

Journal ArticleDOI
TL;DR: In this paper, a sample pooling strategy was used to screen for previously undetected SARS-CoV-2 in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across the Mount Sinai Health System in New York.
Abstract: Numerous reports document the spread of SARS-CoV-2, but there is limited information on its introduction before the identification of a local case. This may lead to incorrect assumptions when modeling viral origins and transmission. Here, we utilize a sample pooling strategy to screen for previously undetected SARS-CoV-2 in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across the Mount Sinai Health System in New York. The patients had been previously evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020. We identify SARS-CoV-2 RNA from specimens collected as early as 25 January 2020, and complete SARS-CoV-2 genome sequences from multiple pools of samples collected between late February and early March, documenting an increase prior to the later surge. Our results provide evidence of sporadic SARS-CoV-2 infections a full month before both the first officially documented case and emergence of New York as a COVID-19 epicenter in March 2020.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated COVID-19 rapid autopsy tissues using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID19-induced damage.
Abstract: Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.

Journal ArticleDOI
07 May 2021
TL;DR: The COVID-19 pandemic created an unprecedented need for comprehensive laboratory testing of populations, in order to meet the needs of medical practice and to guide the management and functioning of our society.
Abstract: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, created an unprecedented need for comprehensive laboratory testing of populations, in order to meet the needs of medical practice and to guide the management and functioning of our society. With the greater New York metropolitan area as an epicenter of this pandemic beginning in March 2020, a consortium of laboratory leaders from the assembled New York academic medical institutions was formed to help identify and solve the challenges of deploying testing. This report brings forward the experience of this consortium, based on the real-world challenges which we encountered in testing patients and in supporting the recovery effort to reestablish the health care workplace. In coordination with the Greater New York Hospital Association and with the public health laboratory of New York State, this consortium communicated with state leadership to help inform public decision-making addressing the crisis. Through the length of the pandemic, the consortium has been a critical mechanism for sharing experience and best practices in dealing with issues including the following: instrument platforms, sample sources, test performance, pre- and post-analytical issues, supply chain, institutional testing capacity, pooled testing, biospecimen science, and research. The consortium also has been a mechanism for staying abreast of state and municipal policies and initiatives, and their impact on institutional and laboratory operations. The experience of this consortium may be of value to current and future laboratory professionals and policy-makers alike, in dealing with major events that impact regional laboratory services.

Journal ArticleDOI
24 Feb 2021-PLOS ONE
TL;DR: In this article, the authors explored the association of SARS-CoV-2 VL at admission to acute kidney injury (AKI) in a large diverse cohort of hospitalized patients with COVID-19.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated Coronavirus Disease 2019 (COVID-19) is a public health emergency. Acute kidney injury (AKI) is a common complication in hospitalized patients with COVID-19 although mechanisms underlying AKI are yet unclear. There may be a direct effect of SARS-CoV-2 virus on the kidney; however, there is currently no data linking SARS-CoV-2 viral load (VL) to AKI. We explored the association of SARS-CoV-2 VL at admission to AKI in a large diverse cohort of hospitalized patients with COVID-19. Methods and findings We included patients hospitalized between March 13th and May 19th, 2020 with SARS-CoV-2 in a large academic healthcare system in New York City (N = 1,049) with available VL at admission quantified by real-time RT-PCR. We extracted clinical and outcome data from our institutional electronic health records (EHRs). AKI was defined by KDIGO guidelines. We fit a Fine-Gray competing risks model (with death as a competing risk) using demographics, comorbidities, admission severity scores, and log10 transformed VL as covariates and generated adjusted hazard ratios (aHR) and 95% Confidence Intervals (CIs). VL was associated with an increased risk of AKI (aHR = 1.04, 95% CI: 1.01-1.08, p = 0.02) with a 4% increased hazard for each log10 VL change. Patients with a viral load in the top 50th percentile had an increased adjusted hazard of 1.27 (95% CI: 1.02-1.58, p = 0.03) for AKI as compared to those in the bottom 50th percentile. Conclusions VL is weakly but significantly associated with in-hospital AKI after adjusting for confounders. This may indicate the role of VL in COVID-19 associated AKI. This data may inform future studies to discover the mechanistic basis of COVID-19 associated AKI.

Journal ArticleDOI
TL;DR: In this paper, the human leukocyte antigen (HLA) supergene was shown to be a tumor suppressor in a large and diverse group of malignancies.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the prognostic value of 10 putative tumor markers by immunohistochemistry in a large multi-institutional cohort of patients with locally advanced urothelial cancer of the bladder (UCB) with the aim to validate their clinical value and to harmonize protocols for their evaluation.
Abstract: Purpose We evaluated the prognostic value of 10 putative tumor markers by immunohistochemistry in a large multi-institutional cohort of patients with locally advanced urothelial cancer of the bladder (UCB) with the aim to validate their clinical value and to harmonize protocols for their evaluation Materials and Methods Primary tumor specimens from 576 patients with pathologic (p)T3 UCB were collected from 24 institutions in North America and Europe Three replicate 06-mm core diameter samples were collected for the construction of a tissue microarray (TMA) Immunohistochemistry (IHC) for 10 previously described tumor markers was performed and scored at 3 laboratories independently according to a standardized protocol Associations between marker positivity and freedom from recurrence (FFR) or overall survival (OS) were analyzed separately for each individual laboratory using Cox regression analysis Results The overall agreement of the IHC scoring among laboratories was poor Correlation among the 3 laboratories varied across the 10 markers There was generally a lack of association between the individual markers and FFR or OS The number of altered cell cycle regulators (p53, Rb, and p21) was associated with increased risk of cancer recurrence (P Conclusions This large international TMA of locally advanced (pT3) UCB suggests that altered expression of p53, Rb, and p21 is associated with worse outcome However this study also highlights limitations in the reproducibility of IHC even in the most expert hands

Journal ArticleDOI
20 Nov 2021-Heliyon
TL;DR: A novel clinical assay for the detection and quantitation of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was adapted from an in-house, research-based enzyme-linked immunosorbent assay (ELISA).

Posted ContentDOI
15 May 2021-medRxiv
TL;DR: In this paper, the authors reported a case of a multiple myeloma (MM) patient who developed a fatal SARS-CoV-2 infection after full vaccination while in remission after B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T treatment.
Abstract: SUMMARY Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are highly effective in healthy individuals. Patients with multiple myeloma (MM) are immunocompromised due to defects in humoral and cellular immunity as well as immunosuppressive therapies. The efficacy after two doses of SARS-CoV-2 mRNA vaccination in MM patients is currently unknown. Here, we report the case of a MM patient who developed a fatal SARS-CoV-2 infection after full vaccination while in remission after B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T treatment. We show that the patient failed to generate antibodies or SARS-CoV-2-specific B and T cell responses, highlighting the continued risk of severe coronavirus disease 2019 (COVID-19) in vaccine non-responders. In the largest cohort of vaccinated MM patients to date, we demonstrate that 15.9% lack SARS-CoV-2 spike antibody response more than 10 days after the second mRNA vaccine dose. The patients actively receiving MM treatment, especially on regimens containing anti-CD38 and anti-BCMA, have lower antibody responses compared to healthy controls. Thus, it is of critical importance to monitor this patient population for serological responses. Non-responders may benefit from ongoing public health measures and from urgent study of prophylactic treatments to prevent SARS-CoV-2 infection.

Journal ArticleDOI
TL;DR: In this article, a review of the epidemiology and biological consequences of SARS-CoV-2 infection in GU cancer patients as well as the impact of COVID-19 on the diagnosis and management of these patients, and the use and development of novel and innovative diagnostic tests, therapies, and technology.
Abstract: Coronavirus disease-2019 (COVID-19), a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has become an unprecedented global health emergency, with fatal outcomes among adults of all ages throughout the world. There is a high incidence of infection and mortality among cancer patients with evidence to support that patients diagnosed with cancer and SARS-CoV-2 have an increased likelihood of a poor outcome. Clinically relevant changes imposed as a result of the pandemic, are either primary, due to changes in timing or therapeutic modality; or secondary, due to altered cooperative effects on disease progression or therapeutic outcomes. However, studies on the clinical management of patients with genitourinary cancers during the COVID-19 pandemic are limited and do little to differentiate primary or secondary impacts of COVID-19. Here, we provide a review of the epidemiology and biological consequences of SARS-CoV-2 infection in GU cancer patients as well as the impact of COVID-19 on the diagnosis and management of these patients, and the use and development of novel and innovative diagnostic tests, therapies, and technology. This article also discusses the biomedical advances to control the virus and evolving challenges in the management of prostate, bladder, kidney, testicular, and penile cancers at all stages of the patient journey during the first year of the COVID-19 pandemic.

Posted ContentDOI
07 Apr 2021-medRxiv
TL;DR: In this article, the authors used a digital spatial profiling of lung and lymph node tissue to compare two patients with different clinical courses and symptomatology to identify key regulators of COVID-19 and list specific mediators.
Abstract: BackgroundCurrent understanding of COVID-19 pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies evaluating patient tissues with advanced molecular tools. MethodsAutopsy tissues from two COVID-19 patients, one of whom died after a month-long hospitalization with multi-organ involvement while the other died after a few days of respiratory symptoms, were evaluated using multi-scale RNASeq methods (bulk, single-nuclei, and spatial RNASeq next-generation sequencing) to provide unprecedented molecular resolution of COVID-19 induced damage. FindingsComparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin-like receptor or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin I converting enzyme 2 was rarely expressed, while Basignin showed diffuse expression, and alanyl aminopeptidase was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptomatology with Digital Spatial Profiling resulted in distinct molecular phenotypes. InterpretationCOVID-19 is a far more complex and heterogeneous disease than initially anticipated. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors at play in individual patients, measure the staggering diversity of receptors in specific brain areas and other well-defined tissue compartments at the single-cell level, and help dissect differences driving diverging clinical courses among patients. Extension of this approach to larger datasets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology. FundingNo external funding was used in this study. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSInformation regarding changes seen in COVID-19 has accumulated very rapidly over a short period of time. Studies often rely on examination of normal samples and model systems, or are limited to peripheral blood or small biopsies when dealing with tissues collected from patients infected with SARS-CoV-2. For that reason, autopsy studies have become an important source of insights into the pathophysiology of severe COVID-19 disease, highlighting the emerging role of hyperinflammatory and hypercoagulable syndromes. Studies of autopsy tissues, however, are usually limited to histopathologic and immunohistochemical evaluation. The next frontier in understanding COVID-19 mechanisms of disease will require generation of highly dimensional, patient-specific datasets that can help dissect this complex and heterogeneous disease. Added value of this studyOur work illustrates how high-resolution molecular and spatial profiling of COVID-19 patient tissues collected during rapid autopsies can serve as a hypothesis-generating tool to identify key mediators driving the pathophysiology of COVID-19 for diagnostic and therapeutic target testing. Here we employ bulk RNA sequencing to identify key regulators of COVID-19 and list specific mediators for further study as potential diagnostic and therapeutic targets. We use single-nuclei RNA sequencing to highlight the diversity and heterogeneity of coronavirus receptors within the brain, suggesting that it will be critical to expand the focus from ACE2 to include other receptors, such as BSG and ANPEP, and we perform digital spatial profiling of lung and lymph node tissue to compare two patients with different clinical courses and symptomatology. Implications of all the available evidenceCOVID-19 is a far more heterogeneous and complex disease than initially anticipated. Advanced molecular tools can help identify specific pathways and effectors driving the pathophysiology of COVID-19 and lead to novel biomarkers and therapeutic targets in a patient-specific manner. Larger studies representing the diversity of clinical presentations and pre-existing conditions will be needed to capture the full complexity of this disease.

Posted ContentDOI
12 Mar 2021-medRxiv
TL;DR: In this article, the authors compared two methods for SARS-CoV-2 detection in saliva: the Roche cobas® 6800/8800 real-time RT-PCR Test and the Agena Biosciences MassARRAY® SARS CoV2 Panel/MassARray® System.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic has accelerated the need for rapid implementation of diagnostic assays for detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in respiratory specimens. While multiple molecular methods utilize nasopharyngeal specimens, supply chain constraints and need for easier and safer specimen collection warrant alternative specimen types, particularly saliva. Although saliva has been found to be a comparable clinical matrix for detection of SARS-CoV-2, evaluations of diagnostic and analytic performance across platforms for this specimen type are limited. Here, we compared two methods for SARS-CoV-2 detection in saliva: the Roche cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test and the Agena Biosciences MassARRAY® SARS-CoV-2 Panel/MassARRAY® System. Overall, both systems had high agreement with one another, and both demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of each platform and determined the limit of detection of the Roche assay was four times lower than that of Agena for saliva specimens (390.6 v. 1,562.5 copies/mL). Furthermore, across individual target components of each assay, T2 and N2 targets had the lowest limits of detection for each platform, respectively. Together, we demonstrate that saliva represents an appropriate specimen for SARS-CoV-2 detection in two technologies that have high agreement and differ in analytical sensitivities overall and across individual component targets. The addition of saliva as an acceptable specimen and understanding the sensitivity for testing on these platforms can further inform public health measures for screening and detection to combat the COVID-19 pandemic.

Posted ContentDOI
11 Feb 2021-medRxiv
TL;DR: In this article, a sample pooling strategy was used to screen for SARS-CoV-2 RNA in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across our NYC health system who were evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020.
Abstract: New York City (NYC) emerged as a coronavirus disease 2019 (COVID-19) epicenter in March 2020, but there is limited information regarding potentially unrecognized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections before the first reported case We utilized a sample pooling strategy to screen for SARS-CoV-2 RNA in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across our NYC health system who were evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020 We obtained complete SARS-CoV-2 genome sequences from samples collected between late February and early March Additionally, we detected SARS-CoV-2 RNA in pooled specimens collected in the week ending 25 January 2020, indicating that SARS-CoV-2 caused sporadic infections in NYC a full month before the first officially documented case ONE SENTENCE SUMMARY Molecular surveillance demonstrates that SARS-CoV-2 caused influenza-like illness in NYC before the first reported case

Posted ContentDOI
23 Sep 2021-bioRxiv
TL;DR: In this paper, the authors conducted small RNA sequencing and mass spectrometry (LC-MS/MS) of extracellular vesicles (EVs) isolated from in vitro cancer cell culture and prostate cancer patients serum.
Abstract: Circulating extracellular vesicles (EVs) contain molecular footprints from their cell of origin and may provide potential non-invasive access for detection, characterization, and monitoring of numerous diseases. Despite their growing promise, the integrated proteo-transcriptomic landscape of EVs and their donor cells remain poorly understood. To assess their cargo, we conducted small RNA sequencing and mass spectrometry (LC-MS/MS) of EVs isolated from in vitro cancer cell culture and prostate cancer patients serum. Here, we report that EVs enrich for distinct molecular cargo, and their proteo-transcriptome is predominantly different from their cancer cell of origin, implicating a coordinated disposal and delivery mechanism. We have discovered that EVs package their cargo in a non-random fusion, as their most enriched RNAs and proteins are not the most abundant cargo from their donor cells. We show that EVs enrich for 4 times more cytoskeletal and 2 times extracellular proteins than their donor cells. While the donor cells carry 10 times more mitochondrial and 3 times nuclear proteins than their EVs. EVs predominantly (40-60%) enrich for small RNA (~15-200 nucleotides) molecules that implicate cell differentiation, development, and signaling signatures. Finally, our integrated proteo-transcriptomic analyses reveal that EVs are enriched of RNAs (RNY3, vtRNA, and MIRLET-7) and their complementary proteins (YBX1, IGF2BP2, SRSF1/2), implicating an interrelated mechanism that may protect and regulate transcripts until a biological function is achieved. Based on these results, we envision that the next-generation clinical assays will take an integrative multi-omic (proteomic and transcriptomic) approach for liquid biopsy in numerous diseases.

Posted ContentDOI
16 Sep 2021-medRxiv
TL;DR: The Agena MassARRAY® SARS-CoV-2 Panel combines RT-PCR and MALDI-TOF mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses.
Abstract: The COVID-19 pandemic sparked rapid development of SARS-CoV-2 diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines RT-PCR and MALDI-TOF mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified dataset of 1,262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 through April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly-specific for the alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.