scispace - formally typeset
Search or ask a question
Institution

Chung-Ang University

EducationSeoul, South Korea
About: Chung-Ang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 13381 authors who have published 26978 publications receiving 416735 citations. The organization is also known as: CAU & Chung.
Topics: Population, Thin film, Medicine, Cancer, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: An IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation.
Abstract: Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

185 citations

Journal ArticleDOI
TL;DR: This study designs a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers, and demonstrates how it made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity.
Abstract: We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong performance of RNNs, it is often challenging for users to understand why the model makes a particular prediction. Such black-box nature of RNNs can impede its wide adoption in clinical practice. Furthermore, we have no established methods to interactively leverage users' domain expertise and prior knowledge as inputs for steering the model. Therefore, our design study aims to provide a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers. Following the iterative design process between the experts, we design, implement, and evaluate a visual analytics tool called RetainVis, which couples a newly improved, interpretable, and interactive RNN-based model called RetainEX and visualizations for users' exploration of EMR data in the context of prediction tasks. Our study shows the effective use of RetainVis for gaining insights into how individual medical codes contribute to making risk predictions, using EMRs of patients with heart failure and cataract symptoms. Our study also demonstrates how we made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity. This study will provide a useful guideline for researchers that aim to design an interpretable and interactive visual analytics tool for RNNs.

185 citations

Journal ArticleDOI
TL;DR: In this article, a cascade of transitions in the spectroscopic properties of MATBG as a function of electron filling were observed in high-resolution scanning tunneling microscopy (STM) images.
Abstract: Magic-angle twisted bilayer graphene (MATBG) exhibits a rich variety of electronic states, including correlated insulators, superconductors, and topological phases. Understanding the microscopic mechanisms responsible for these phases requires determining the interplay between electron-electron interactions and quantum degeneracy due to spin and valley degrees of freedom. Signatures of strong electron-electron correlations have been observed at partial fillings of the flat electronic bands in recent spectroscopic measurements. Transport experiments have shown changes in the Landau level degeneracy at fillings corresponding to an integer number of electrons per moire unit cell. However, the interplay between interaction effects and the degeneracy of the system is currently unclear. Using high-resolution scanning tunneling microscopy (STM), we observed a cascade of transitions in the spectroscopic properties of MATBG as a function of electron filling. We find distinct changes in the chemical potential and a rearrangement of the low-energy excitations at each integer filling of the moire flat bands. These spectroscopic features are a direct consequence of Coulomb interactions, which split the degenerate flat bands into Hubbard sub-bands. We find these interactions, the strength of which we can extract experimentally, to be surprisingly sensitive to the presence of a perpendicular magnetic field, which strongly modifies the spectroscopic transitions. The cascade of transitions we report here characterizes the correlated high-temperature parent phase from which various insulating and superconducting ground-state phases emerge at low temperatures in MATBG.

183 citations

Journal ArticleDOI
TL;DR: Symptom screening fails to identify most COVID-19 cases in children, and SARS-CoV-2 RNA in children is detected for an unexpectedly long time.
Abstract: Importance There is limited information describing the full spectrum of coronavirus disease 2019 (COVID-19) and the duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection in children. Objective To analyze the full clinical course and the duration of SARS-CoV-2 RNA detectability in children confirmed with COVID-19 in the Republic of Korea, where rigorous public health interventions have been implemented. Design, Setting, and Participants This case series of children with COVID-19 was conducted in 20 hospitals and 2 nonhospital isolation facilities across the country from February 18, 2020, to March 31, 2020. Children younger than 19 years who had COVID-19 were included. Exposures Confirmed COVID-19, detected via SARS-CoV-2 RNA in a combined nasopharyngeal and oropharyngeal swab or sputum by real-time reverse transcription–polymerase chain reaction. Main Outcomes and Measures Clinical manifestations during the observation period, including the time and duration of symptom occurrence. The duration of SARS-CoV-2 RNA detection was also analyzed. Results A total of 91 children with COVID-19 were included (median [range] age, 11 [0-18] years; 53 boys [58%]). Twenty children (22%) were asymptomatic during the entire observation period. Among 71 symptomatic cases, 47 children (66%) had unrecognized symptoms before diagnosis, 18 (25%) developed symptoms after diagnosis, and only 6 (9%) were diagnosed at the time of symptom onset. Twenty-two children (24%) had lower respiratory tract infections. The mean (SD) duration of the presence of SARS-CoV-2 RNA in upper respiratory samples was 17.6 (6.7) days. Virus RNA was detected for a mean (SD) of 14.1 (7.7) days in asymptomatic individuals. There was no difference in the duration of virus RNA detection between children with upper respiratory tract infections and lower respiratory tract infections (mean [SD], 18.7 [5.8] days vs 19.9 [5.6] days;P = .54). Fourteen children (15%) were treated with lopinavir-ritonavir and/or hydroxychloroquine. All recovered, without any fatal cases. Conclusions and Relevance In this case series study, inapparent infections in children may have been associated with silent COVID-19 transmission in the community. Heightened surveillance using laboratory screening will allow detection in children with unrecognized SARS-CoV-2 infection.

182 citations

Journal ArticleDOI
TL;DR: The probiotic mixture was effective in providing AR of overall IBS symptoms and improvement of stool consistency in D-IBS patients, although it had no significant effect on individual symptoms.
Abstract: Background:The clinical effect of probiotics on irritable bowel syndrome (IBS) is still controversial.Aims:We aimed to evaluate the effects of a probiotic mixture on IBS symptoms and the composition of fecal microbiota in patients with diarrhea-dominant IBS (D-IBS).Methods:Fifty patients with D-IBS

182 citations


Authors

Showing all 13500 results

NameH-indexPapersCitations
Carl Nathan13543091535
Scheffer C.G. Tseng9333329213
Richard L. Sidman9329732009
H. Yamaguchi9037533135
Ajith Abraham86111331834
Byung Ihn Choi7860924925
Stefano Soatto7849923597
J. H. Kim7356623052
Daehee Kang7242223959
Lance M. McCracken7228118897
Masanobu Shinozuka6945621961
Seung U. Kim6435514269
Sug Hyung Lee6445421552
Seung U. Kim6312911983
Nam Jin Yoo6340312692
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Kyung Hee University
46.5K papers, 953.5K citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022204
20212,536
20202,301
20192,140
20181,991